Eigenvalue bounds for a class of singular potentials

被引:10
作者
Hall, RL [1 ]
Saad, N [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 03期
关键词
D O I
10.1088/0305-4470/31/3/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study smooth transformations V(x) = g(x(2)) + f(1/x(2)) of the solvable potentials lambda x(2) + mu/x(2). Eigenvalue approximation formulae are obtained which provide lower or upper energy bounds for all the discrete energy eigenvalues E-n, n = 0,1,2,..., accordingly as the transformation functions g and f are both convex or both concave. Detailed results are presented For the special case of two-term singular potentials of the form V(x) = lambda x(beta) + mu/x(alpha), alpha, beta > 0, and also for the potentials V(x) = lambda x(1.9) + mu/x(1.9) and V(x) = lambda x(2.1) + mu/x(2.1), lambda > 0, mu > 0, for 0 less than or equal to n less than or equal to 10.
引用
收藏
页码:963 / 967
页数:5
相关论文
共 20 条
[1]   VARIATIONAL AND PERTURBATIVE SCHEMES FOR A SPIKED HARMONIC-OSCILLATOR [J].
AGUILERANAVARRO, VC ;
ESTEVEZ, GA ;
GUARDIOLA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :99-104
[2]   NONSINGULAR SPIKED HARMONIC-OSCILLATOR [J].
AGUILERANAVARRO, VC ;
GUARDIOLA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (08) :2135-2141
[3]  
[Anonymous], PROBLEMS QUANTUM MEC
[4]  
Constantinescu F., 1971, PROBLEMS QUANTUM MEC
[5]   THE NONSINGULAR SPIKED HARMONIC-OSCILLATOR [J].
ESTEVEZBRETON, ES ;
ESTEVEZBRETON, GA .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :437-440
[6]  
FLUGGE S, 1971, PRACTICAL QUANTUM ME
[7]   THE SPIKED HARMONIC-OSCILLATOR V(R)=R2 + LAMBDA-R-4 AS A CHALLENGE TO PERTURBATION-THEORY [J].
FLYNN, MF ;
GUARDIOLA, R ;
ZNOJIL, M .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1991, 41 (11) :1019-1029
[8]   A CLASS OF EXACTLY SOLVABLE POTENTIALS .1. ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
GINOCCHIO, JN .
ANNALS OF PHYSICS, 1984, 152 (01) :203-219
[9]  
Goldman II., 1961, PROBLEMS QUANTUM MEC
[10]   Eigenvalue bounds for transformations of solvable potentials [J].
Hall, RL ;
Saad, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09) :2127-2134