A feasible BFGS interior point algorithm for solving convex minimization problems

被引:36
作者
Armand, P
Gilbert, JC
Jan-Jégou, S
机构
[1] Fac Sci, LACO, F-87060 Limoges, France
[2] INRIA Rocquencourt, F-78153 Le Chesnay, France
[3] Univ Toulouse 3, UFR MIG, MIP, F-31062 Toulouse, France
关键词
analytic center; BFGS quasi-Newton approximations; constrained optimization; convex programming; interior point algorithm; line-search; primal-dual method; superlinear convergence;
D O I
10.1137/S1052623498344720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set defined by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters mu converging to zero. We prove that it converges q-superlinearly for each fixed mu. We also show that it is globally convergent to the analytic center of the primal-dual optimal set when mu tends to 0 and strict complementarity holds.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 51 条
[1]  
[Anonymous], 2000, FRONTIERS APPL MATH
[2]  
[Anonymous], 1976, P NONL PROGR SIAM AM
[3]  
[Anonymous], 1996, INTERIOR POINT METHO
[4]  
ANSTREICHER KM, 1994, OPTIMIZATION METHODS, V3, P273
[5]   Asymptotic analysis for penalty and barrier methods in convex and linear programming [J].
Auslender, A ;
Cominetti, R ;
Haddou, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (01) :43-62
[6]  
Berz M., 1996, COMPUTATIONAL DIFFER
[7]   A trust region interior point algorithm for linearly constrained optimization [J].
Bonnans, JF ;
Pola, C .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) :717-731
[8]   A TOOL FOR THE ANALYSIS OF QUASI-NEWTON METHODS WITH APPLICATION TO UNCONSTRAINED MINIMIZATION [J].
BYRD, RH ;
NOCEDAL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :727-739
[9]  
BYRD RH, 1996, 2896 INRIA
[10]  
BYRD RH, UNPUB MATH PROGRAMMI