Efficiency of chimeraplast gene targeting by direct nuclear injection using a GFP recovery assay

被引:30
作者
Tran, ND
Liu, XM
Yan, ZY
Abbote, D
Jiang, QS
Kmiec, EB
Sigmund, CD
Engelhardt, JF [1 ]
机构
[1] Univ Iowa, Coll Med, Dept Anat & Cell Biol, Iowa City, IA 52242 USA
[2] Univ Iowa, Coll Med, Ctr Gene Therapy Cyst Fibrosis & Other Genet Dis, Iowa City, IA 52242 USA
[3] Univ Delaware, Delaware Biotechnol Inst, Dept Sci Biol, Newark, DE 19716 USA
[4] Univ Iowa, Coll Med, Dept Internal Med, Iowa City, IA 52242 USA
关键词
gene targeting; RNA/DNA oligonucleoticles; gene therapy; fibroblasts;
D O I
10.1016/S1525-0016(02)00039-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Traditional RNA-DNA chimeric oligonucleotides (chimeraplasts), composed of a continuous stretch of RNA and DNA residues in a duplex conformation, have been shown to correct single-base mutations in episomal and genomic DNA both in vitro and in vivo. In the current study, we have compared the efficiency of single-base pair correction between a traditionally designed chimeraplast (covalently linked duplex) and hybrid chimeraplasts (noncovalent duplexes formed from stretches of RNA and DNA nucleotides synthesized individually and hybridized in vitro). Six hybrid chimeraplasts of identical length were constructed with various lengths of target homology and strand location of the desired nucleotide change. These constructs were evaluated for their ability to correct a point mutation in the gene encoding recombinant enhanced green fluorescent protein (eGFP) that rendered the protein nonfluorescent. A plasmid encoding this mutant eGFP gene and a chimeraplast were co-introduced directly into the nuclei of primary fibroblasts by microinjection. As shown by the recovery of eGFP fluorescence, three of the six hybrid chimeraplasts demonstrated the ability to mediate gene correction (0.4-2.4%). Covalent joining of RNA and DNA strands in chimeraplasts was not necessary for correction of DNA mutations. However, the strand placement of the desired nucleotide change and the length of nonhomologous sequences flanking target nucleotides played a crucial role in the efficiency of chimeraplast-mediated gene correction. Despite the ability of certain chimeraplast designs to correct point mutations in episomal plasmids, targeted correction of integrated copies of the mutant eGFP transgene was unsuccessful in primary fibroblasts. These results demonstrate that, although chimeraplasts are fairly effective at targeting episomal DNA in primary cells, further optimization is required to increase the efficiency for targeting integrated genes.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 12 条
[1]   Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide [J].
Alexeev, V ;
Yoon, K .
NATURE BIOTECHNOLOGY, 1998, 16 (13) :1343-1346
[2]   Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide [J].
Alexeev, V ;
Igoucheva, O ;
Domashenko, A ;
Cotsarelis, G ;
Yoon, K .
NATURE BIOTECHNOLOGY, 2000, 18 (01) :43-47
[3]   In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide [J].
Bartlett, RJ ;
Stockinger, S ;
Denis, MM ;
Bartlett, WT ;
Inverardi, L ;
Le, TT ;
Man, NT ;
Morris, GE ;
Bogan, DJ ;
Metcalf-Bogan, J ;
Kornegay, JN .
NATURE BIOTECHNOLOGY, 2000, 18 (06) :615-622
[4]   Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide [J].
ColeStrauss, A ;
Yoon, KG ;
Xiang, YF ;
Byrne, BC ;
Rice, MC ;
Gryn, J ;
Holloman, WK ;
Kmiec, EB .
SCIENCE, 1996, 273 (5280) :1386-1389
[5]   Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells [J].
Davis, BR ;
Yannariello-Brown, J ;
Prokopishyn, NL ;
Luo, ZJ ;
Smith, MR ;
Wang, J ;
Carsrud, NDV ;
Brown, DB .
BLOOD, 2000, 95 (02) :437-444
[6]   The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts [J].
Gamper, HB ;
Parekh, H ;
Rice, MC ;
Bruner, M ;
Youkey, H ;
Kmiec, EB .
NUCLEIC ACIDS RESEARCH, 2000, 28 (21) :4332-4339
[7]   A plausible mechanism for gene correction by chimeric oligonucleotides [J].
Gamper, HB ;
Cole-Strauss, A ;
Metz, R ;
Parekh, H ;
Kumar, R ;
Kmiec, EB .
BIOCHEMISTRY, 2000, 39 (19) :5808-5816
[8]   Targeted gene correction by small single-stranded oligonucleotides in mammalian cells [J].
Igoucheva, O ;
Alexeev, V ;
Yoon, K .
GENE THERAPY, 2001, 8 (05) :391-399
[9]   Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides [J].
Rando, TA ;
Disatnik, MH ;
Zhou, LZH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5363-5368
[10]   The potential of nucleic acid repair in functional genomics [J].
Rice, MC ;
Czymmek, K ;
Kmiec, EB .
NATURE BIOTECHNOLOGY, 2001, 19 (04) :321-326