Nanoscale phase-aggregation-induced performance improvement of polymer solar cells

被引:35
作者
Yang, Xiaoniu [1 ]
Lu, Guanghao
Li, Ligui
Zhou, Enle
机构
[1] Acad Sinica, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Acad Sinica, Grad Sch, Changchun 130022, Peoples R China
关键词
conjugated polymers; crystal growth; fullerenes; photovoltaic devices; solar cells; FIELD-EFFECT MOBILITY; PHOTOVOLTAIC CELLS; EXCITON DIFFUSION; MORPHOLOGY; HETEROJUNCTION; POLY(3-HEXYLTHIOPHENE); DISSOCIATION; COMPOSITES; BLENDS;
D O I
10.1002/smll.200600571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale aggregation of fullerene (C60) induced by its crystallization upon thermal treatment provides improved morphology for the photoactive layer. The electron donor-acceptor approach is the most successful method to make photoinduced excitons split into free charge carriers, which are collected by the corresponding electrodes and give photovoltaic electricity. The formation of nanoscale C60 single crystals and their homogeneous distribution in the photoactive layer provide a continuous pathways for electron transportation to the cathode, which could decrease the recombination procedure. Nanoscale aggregation of acceptor C60 in the composite film helps in improving the performance of the electron donor P3HT/C 60 device. In polymer solar cells based on a mixture consisting of conjugated polymer and organic small-molecule constituents, small molecules form clusters and provide continuous pathways for the transportation of free charge carriers throughout the film.
引用
收藏
页码:611 / 615
页数:5
相关论文
共 27 条
[1]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[2]  
2-A
[3]   Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell [J].
Campos, LM ;
Tontcheva, A ;
Günes, S ;
Sonmez, G ;
Neugebauer, H ;
Sariciftci, NS ;
Wudl, F .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4031-4033
[4]   Interpenetrating interface in organic photovoltaic cells with heterojunction of poly(3-hexylthiophene) and C60 [J].
Fujii, A ;
Shirakawa, T ;
Umeda, T ;
Mizukami, H ;
Hashimoto, Y ;
Yoshino, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2004, 43 (8A) :5573-5576
[5]   Tetrahedral n-type materials:: Efficient quenching of the excitation of p-type polymers in amorphous films [J].
Ganesan, P ;
Yang, XN ;
Loos, J ;
Savenije, TJ ;
Abellon, RD ;
Zuilhof, H ;
Sudhölter, EJR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (42) :14530-14531
[6]   Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell [J].
Halls, JJM ;
Pichler, K ;
Friend, RH ;
Moratti, SC ;
Holmes, AB .
APPLIED PHYSICS LETTERS, 1996, 68 (22) :3120-3122
[7]   EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS [J].
HALLS, JJM ;
WALSH, CA ;
GREENHAM, NC ;
MARSEGLIA, EA ;
FRIEND, RH ;
MORATTI, SC ;
HOLMES, AB .
NATURE, 1995, 376 (6540) :498-500
[8]   Exciton diffusion and dissociation in conjugated polymer fullerene blends and heterostructures [J].
Haugeneder, A ;
Neges, M ;
Kallinger, C ;
Spirkl, W ;
Lemmer, U ;
Feldmann, J ;
Scherf, U ;
Harth, E ;
Gügel, A ;
Müllen, K .
PHYSICAL REVIEW B, 1999, 59 (23) :15346-15351
[9]   Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight [J].
Kline, RJ ;
McGehee, MD ;
Kadnikova, EN ;
Liu, JS ;
Fréchet, JMJ ;
Toney, MF .
MACROMOLECULES, 2005, 38 (08) :3312-3319
[10]   High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J].
Li, G ;
Shrotriya, V ;
Huang, JS ;
Yao, Y ;
Moriarty, T ;
Emery, K ;
Yang, Y .
NATURE MATERIALS, 2005, 4 (11) :864-868