SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries

被引:30
作者
Fan, Xiulin [1 ]
Shao, Jie [1 ]
Xiao, Xuezhang [1 ]
Wang, Xinhua [1 ]
Li, Shouquan [1 ]
Ge, Hongwei [1 ]
Chen, Lixin [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion battery; Anode; SnLi4.4; Tin; SN-C COMPOSITE; LONG-LIFE ANODE; HIGH-CAPACITY; CATHODE MATERIALS; TIN; GRAPHENE; STORAGE; NANOCOMPOSITES; SILICON;
D O I
10.1016/j.nanoen.2014.07.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Induction melting associated with simple ball-milling is utilized to synthesize a SnLi4.4@C core-shell hierarchical composite in which nanometer-sized SnLi4.4 particles are uniformly dispersed and encapsulated by carbon matrix. When evaluated as anode materials for lithium ion batteries, the composite exhibits a reversible capacity of 680 mA h g(-1) after 200 cycles at 200 mA g(-1). A capacity of 310 mA h g(-1) is obtained even at a high rate of 5000 mA g(-1). The superior electrochemical performance is ascribed to the fact that the prelithiated SnLi4.4 will not exert any expansion stress on the carbon matrix during the subsequent delithiation and lithiation processes, therefore guarantee the sustainable integrity of the composite in the prolonged cycling. The carbon matrix offers continuous transport paths for Li+ ions and electrons inside the composite. Meanwhile the carbon can sufficiently prevent the disintegration and aggregation of Sn nanoparticles upon prolonged cycling. The present study effectively circumvents the low initial Coulombic efficiency of the Sn-related nanocomposites and provides a protocol for pairing lithium-free cathodes to make the next-generation high energy lithium ion batteries. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 65 条
[1]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[2]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[3]   Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes [J].
Chen, Xilin ;
Li, Xiaolin ;
Ding, Fei ;
Xu, Wu ;
Xiao, Jie ;
Cao, Yuliang ;
Meduri, Praveen ;
Liu, Jun ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
NANO LETTERS, 2012, 12 (08) :4124-4130
[4]   In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage [J].
Chen, Zhongxue ;
Zhou, Min ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :95-102
[5]   Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries [J].
Chen, Zhongxue ;
Cao, Yuliang ;
Qian, Jiangfeng ;
Ai, Xinping ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (34) :7266-7271
[6]  
Courtel F., 2013, NANOTECHNOLOGY LITHI, P67
[7]   Ab initio calculation of the lithium-tin voltage profile [J].
Courtney, IA ;
Tse, JS ;
Mao, O ;
Hafner, J ;
Dahn, JR .
PHYSICAL REVIEW B, 1998, 58 (23) :15583-15588
[8]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[9]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[10]   Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode [J].
Deng, Da ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (09) :1660-1663