Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2

被引:1125
作者
Zhao, Yong
Ransom, Joshua F.
Li, Ankang
Vedantham, Vasanth
von Drehle, Morgan
Muth, Alecia N.
Tsuchihashi, Takatoshi
McManus, Michael T.
Schwartz, Robert J.
Srivastava, Deepak
机构
[1] Univ Calif San Francisco, Gladstone Inst Cardiovasc Dis, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Dept Pediat Cardiol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Internal Med Cardiol, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Ctr Diabet, San Francisco, CA 94143 USA
[6] Texas A&M Univ, Hlth Sci Ctr, Inst Biosci & Technol, Houston, TX 77030 USA
[7] Baylor Coll Med, Grad Program Cardiovasc Sci, Houston, TX 77030 USA
关键词
D O I
10.1016/j.cell.2007.03.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are genomically encoded small RNAs used by organisms to regulate the expression of proteins generated from messenger RNA transcripts. The in vivo requirement of specific miRNAs in mammals through targeted deletion remains unknown, and reliable prediction of mRNA targets is still problematic. Here, we show that miRNA biogenesis in the mouse heart is essential for cardiogenesis. Furthermore, targeted deletion of the muscle-specific miRNA, miR-1-2, revealed numerous functions in the heart, including regulation of cardiac morphogenesis, electrical conduction, and cellcycle control. Analyses of miR-1 complementary sequences in mRNAs upregulated upon miR-1-2 deletion revealed an enrichment of miR-1 '' seed matches '' and a strong tendency for potential miR-1 binding sites to be located in physically accessible regions. These findings indicate that subtle alteration of miRNA dosage can have profound consequences in mammals and demonstrate the utility of mammalian lossof-function models in revealing physiologic miRNA targets.
引用
收藏
页码:303 / 317
页数:15
相关论文
共 69 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   Diversity of microRNAs in human and chimpanzee brain [J].
Berezikov, Eugene ;
Thuemmler, Fritz ;
van Laake, Linda W. ;
Kondova, Ivanela ;
Bontrop, Ronald ;
Cuppen, Edwin ;
Plasterk, Ronald H. A. .
NATURE GENETICS, 2006, 38 (12) :1375-1377
[3]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[4]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[5]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[6]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[7]   Building the mammalian heart from two sources of myocardial cells [J].
Buckingham, M ;
Meilhac, S ;
Zaffran, S .
NATURE REVIEWS GENETICS, 2005, 6 (11) :826-835
[8]   The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J].
Chen, JF ;
Mandel, EM ;
Thomson, JM ;
Wu, QL ;
Callis, TE ;
Hammond, SM ;
Conlon, FL ;
Wang, DZ .
NATURE GENETICS, 2006, 38 (02) :228-233
[9]   Genetic modifiers of cardiac arrhythmias [J].
Cheng, CF ;
Kuo, HC ;
Chien, KR .
TRENDS IN MOLECULAR MEDICINE, 2003, 9 (02) :59-66
[10]   Denoising feedback loops by thresholding - a new role for microRNAs [J].
Cohen, Stephen M. ;
Brennecke, Julius ;
Stark, Alexander .
GENES & DEVELOPMENT, 2006, 20 (20) :2769-2772