An SbCl5-doped N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) thin film was studied as a hole-injection layer in low-molecular-weight organic electroluminescent (EL) devices. EL characteristics of devices with a TPD hole-injection layer doped with other oxidizing reagents, such as iodine, FeCl3, and tris(4-bromophenyl)aminium hexachloroantimonate were compared with that of SbCl5-doped TPD. The device with SbCl5-doped TPD on a cleaned indium-tin-oxide (ITO) substrate exhibited the best performance of all the devices studied. The improvement in device performance was attributed to an increase in work function of ITO due to acid formation as a result of hydrolysis of SbCl5 and by thinning the tunneling barrier for hole injection due to formation of the space charge region in highly doped TPD with SbCl5. (C) 2000 American Institute of Physics. [S0003- 6951(00)03950-4].