Small RNA regulators and the bacterial response to stress

被引:174
作者
Gottesman, S. [1 ]
McCullen, C. A.
Guillier, M.
Vanderpool, C. K.
Majdalani, N.
Benhammou, J.
Thompson, K. M.
FitzGerald, P. C.
Sowa, N. A.
FitzGerald, D. J.
机构
[1] NCI, Mol Biol Lab, Ctr Canc Res, Bethesda, MD 20892 USA
[2] NCI, Canc Res Ctr, Genome Anal Unit, Bethesda, MD 20892 USA
关键词
D O I
10.1101/sqb.2006.71.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have uncovered dozens of regulatory small RNAs in bacteria. A large number of these small RNAs act by pairing to their target mRNAs. The outcome of pairing can be either stimulation or inhibition of translation. pairing in vivo frequently depends on the RNA-binding protein Hfq. Synthesis of these small RNAs is tightly regulated at the level of transcription; many of the well-studied stress response regulons have now been found to include a regulatory RNA. Expression of the small RNA can help the cell cope with environmental stress by redirecting cellular metabolism, exemplified by RyhB, a small RNA expressed upon iron starvation. Although small RNAs found in Escherichia coli can usually be identified by sequence comparison to closely related enterobacteria, other approaches are necessary to find the equivalent RNAs in other bacterial species, Nonetheless, it is becoming increasingly clear that many if not all bacteria encode significant numbers of these important regulators. Tracing their evolution through bacterial genomes remains a challenge.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 80 条
[1]   Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB [J].
Afonyushkin, T ;
Vecerek, B ;
Moll, I ;
Bläsi, U ;
Kaberdin, VR .
NUCLEIC ACIDS RESEARCH, 2005, 33 (05) :1678-1689
[2]   A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator [J].
Altuvia, S ;
WeinsteinFischer, D ;
Zhang, AX ;
Postow, L ;
Storz, G .
CELL, 1997, 90 (01) :43-53
[3]   A small bacterial RNA regulates a putative ABC transporter [J].
Antal, M ;
Bordeau, V ;
Douchin, V ;
Felden, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :7901-7908
[4]   Novel small RNA-encoding genes in the intergenic regions of Escherichia coli [J].
Argaman, L ;
Hershberg, R ;
Vogel, J ;
Bejerano, G ;
Wagner, EGH ;
Margalit, H ;
Altuvia, S .
CURRENT BIOLOGY, 2001, 11 (12) :941-950
[5]   fhlA repression by OxyS RNA:: Kissing complex formation at two sites results in a stable antisense-target RNA complex [J].
Argaman, L ;
Altuvia, S .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (05) :1101-1112
[6]   Ectopic RNase E sites promote bypass of 5′-end-dependent mRNA decay in Escherichia coli [J].
Baker, KE ;
Mackie, GA .
MOLECULAR MICROBIOLOGY, 2003, 47 (01) :75-88
[7]   6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter [J].
Barrick, JE ;
Sudarsan, N ;
Weinberg, Z ;
Ruzzo, WL ;
Breaker, RR .
RNA, 2005, 11 (05) :774-784
[8]   RNA REPLICATION - FUNCTION AND STRUCTURE OF QBETA-REPLICASE [J].
BLUMENTHAL, T ;
CARMICHAEL, GG .
ANNUAL REVIEW OF BIOCHEMISTRY, 1979, 48 :525-548
[9]   Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium [J].
Brown, L ;
Elliott, T .
JOURNAL OF BACTERIOLOGY, 1997, 179 (03) :656-662
[10]   Transcription and processing of human microRNA precursors [J].
Cullen, BR .
MOLECULAR CELL, 2004, 16 (06) :861-865