Structural requirements of the fructan-lipid interaction

被引:79
作者
Vereyken, IJ
van Kuik, JA
Evers, TH
Rijken, PJ
de Kruijff, B
机构
[1] Univ Utrecht, Dept Biochem Membranes, Ctr Biomembranes Lipids & Enzymol, Inst Biomembranes, NL-3584 CH Utrecht, Netherlands
[2] Univ Utrecht, Bijvoet Ctr, Sect Glycosci & Biocatalysis, Dept Bioorgan Chem, NL-3584 CH Utrecht, Netherlands
关键词
D O I
10.1016/S0006-3495(03)70039-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fructans are a group of fructose-based oligo- and polysaccharides. They are proposed to be involved in membrane protection of plants during dehydration. In accordance with this hypothesis, they show an interaction with hydrated lipid model systems. However, the structural requirements for this interaction are not known both with respect to the fructans as to the lipids. To get insight into this matter, the interaction of several inulins and levan with lipids was investigated using a monomolecular lipid system or the MC 540 probe in a bilayer system. MID was used to get conformational information concerning the polysaccharides. It was found that levan-type fructan interacted comparably with model membranes composed of glyco- or phospholipids but showed a preference for lipids with a small headgroup. Furthermore, it was found that there was an inulin chain-length-dependent interaction with lipids. The results also suggested that inulin-type fructan had a more profound interaction with the membrane than levan-type fructan. MD simulations indicated that the favorable conformation for levan is a helix, whereas inulin tends to form random coil structures. This suggests that flexibility is an important determinant for the fructan-lipid interaction.
引用
收藏
页码:3147 / 3154
页数:8
相关论文
共 35 条
[1]   THE SOLUTE PERMEABILITY OF THYLAKOID MEMBRANES IS REDUCED BY LOW CONCENTRATIONS OF TREHALOSE AS A CO-SOLUTE [J].
BAKALTCHEVA, I ;
WILLIAMS, WP ;
SCHMITT, JM ;
HINCHA, DK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1189 (01) :38-44
[2]   RELATIVE STABILITY OF ALTERNATIVE CHAIR FORMS AND HYDROXYMETHYL CONFORMATIONS OF BETA-D-GLUCOPYRANOSE [J].
BARROWS, SE ;
DULLES, FJ ;
CRAMER, CJ ;
FRENCH, AD ;
TRUHLAR, DG .
CARBOHYDRATE RESEARCH, 1995, 276 (02) :219-251
[3]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   CONFORMATIONAL-ANALYSIS OF FRUCTANS .2. CONFORMATIONAL-ANALYSIS OF INULOBIOSE BY MOLECULAR MECHANICS [J].
CALUB, TM ;
WATERHOUSE, AL ;
FRENCH, AD .
CARBOHYDRATE RESEARCH, 1990, 207 (02) :221-235
[6]   LIPID POLYMORPHISM AND THE FUNCTIONAL ROLES OF LIPIDS IN BIOLOGICAL-MEMBRANES [J].
CULLIS, PR ;
DEKRUIJFF, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 559 (04) :399-420
[7]   Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.) [J].
De Roover, J ;
Vandenbranden, K ;
Van Laere, A ;
Van den Ende, W .
PLANTA, 2000, 210 (05) :808-814
[8]   Fructans interact strongly with model membranes [J].
Demel, RA ;
Dorrepaal, E ;
Ebskamp, MJM ;
Smeekens, JCM ;
de Kruijff, B .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1375 (1-2) :36-42
[9]  
DEMEL RA, 1994, PHYSICOCHEMICAL METH, P83
[10]  
FERRETTI V, 1983, ACTA CRYSTALLOGR C, V40, P531