The key event in force-induced unfolding of titin's immunoglobulin domains

被引:246
作者
Lu, H
Schulten, K
机构
[1] Univ Illinois, Beckman Inst 3147, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
D O I
10.1016/S0006-3495(00)76273-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Steered molecular dynamics simulation of force-induced titin immunoglobulin domain 127 unfolding led to the discovery of a significant potential energy barrier at an extension of similar to 14 Angstrom on the unfolding pathway that protects the domain against stretching. Previous simulations showed that this barrier is due to the concurrent breaking of six interstrand hydrogen bonds (H-bonds) between beta-strands A' and G that is preceded by the breaking of two to three hydrogen bonds between strands A and B, the latter leading to an unfolding intermediate. The simulation results are supported by Angstrom-resolution atomic force microscopy data. Here we perform a structural and energetic analysis of the H-bonds breaking. It is confirmed that H-bonds between strands A and B break rapidly. However, the breaking of the H-bond between strands A' and G needs to be assisted by fluctuations of water molecules. In nanosecond simulations, water molecules are found to repeatedly interact with the protein backbone atoms, weakening individual interstrand H-bonds until all six A'-G H-bonds break simultaneously under the influence of external stretching forces. Only when those bonds are broken can the generic unfolding take place, which involves hydrophobic interactions of the protein core and exerts weaker resistance against stretching than the key event.
引用
收藏
页码:51 / 65
页数:15
相关论文
共 47 条
[1]  
Brunger A. T., 1992, X PLOR VERSION 3 1 S
[2]   Mechanical unfolding of a β-hairpin using molecular dynamics [J].
Bryant, Z ;
Pande, VS ;
Rokhsar, DS .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :584-589
[3]   Atomic force microscopy captures length phenotypes in single proteins [J].
Carrion-Vazquez, M ;
Marszalek, PE ;
Oberhauser, AF ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11288-11292
[4]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699
[5]   Folding studies of immunoglobulin-like β-sandwich proteins suggest that they share a common folding pathway [J].
Clarke, J ;
Cota, E ;
Fowler, SB ;
Hamill, SJ .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (09) :1145-1153
[7]   Strength of a weak bond connecting flexible polymer chains [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1999, 76 (05) :2439-2447
[8]   Nonuniform elasticity of titin in cardiac myocytes: A study using immunoelectron microscopy and cellular mechanics [J].
Granzier, H ;
Helmes, M ;
Trombitas, K .
BIOPHYSICAL JOURNAL, 1996, 70 (01) :430-442
[9]  
Greaser ML, 1996, ADV BIOPHYS, V33, P13
[10]   Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force [J].
Grubmuller, H ;
Heymann, B ;
Tavan, P .
SCIENCE, 1996, 271 (5251) :997-999