REVERSIBLE UNFOLDING OF FIBRONECTIN TYPE-III AND IMMUNOGLOBULIN DOMAINS PROVIDES THE STRUCTURAL BASIS FOR STRETCH AND ELASTICITY OF TITIN AND FIBRONECTIN

被引:266
作者
ERICKSON, HP
机构
[1] Department of Cell Biology, Duke University Medical Center, Durham
关键词
D O I
10.1073/pnas.91.21.10114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The elastic protein titin comprises a tandem array of fibronectin type III and immunoglobulin domains, which are structurally similar 7-strand beta-sandwiches. A proposed mechanism for stretching titin, by sequential denaturation of individual fibronectin type III-immunoglobulin domains in response to applied tension, is analyzed here quantitatively. The folded domain is approximate to 4 nm long, and the unraveled polypeptide can extend to 29 nm, providing a 7-fold stretch over the relaxed length. Elastic recoil is achieved by refolding of the denatured domains when the force is released. The critical force required to denature a domain is calculated to be 3.5-5 pN, based on a net free energy for denaturation of 7-14 kcal/mol, plus 5 kcal/mol to extend the polypeptide (1 cal = 4.184 J). This force is comparable to the 2- to 7-pN force generated by single myosin or kinesin molecules. The force needed to pull apart a noncovalent protein-protein interface is estimated here to be 10-30 pN, implying that titin will stretch internally before the molecule is pulled from its attachment at the Z band. Many extracellular matrix and cell adhesion molecules, such as fibronectin, contain tandem arrays of fibronectin type III domains. Both single molecules and matrix fibers should have elastic properties similar to titin.
引用
收藏
页码:10114 / 10118
页数:5
相关论文
共 36 条
[1]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[2]  
BENIAN GM, 1993, GENETICS, V134, P1097
[3]   PROPOSED ACQUISITION OF AN ANIMAL PROTEIN DOMAIN BY BACTERIA [J].
BORK, P ;
DOOLITTLE, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (19) :8990-8994
[5]   FIBRONECTIN MOLECULE VISUALIZED IN ELECTRON-MICROSCOPY - A LONG, THIN, FLEXIBLE STRAND [J].
ERICKSON, HP ;
CARRELL, N ;
MCDONAGH, J .
JOURNAL OF CELL BIOLOGY, 1981, 91 (03) :673-678
[6]   PRINCIPLES OF PROTEIN STABILITY DERIVED FROM PROTEIN ENGINEERING EXPERIMENTS [J].
FERSHT, AR ;
SERRANO, L .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (01) :75-83
[7]   SINGLE MYOSIN MOLECULE MECHANICS - PICONEWTON FORCES AND NANOMETER STEPS [J].
FINER, JT ;
SIMMONS, RM ;
SPUDICH, JA .
NATURE, 1994, 368 (6467) :113-119
[8]   ADHESION FORCES BETWEEN INDIVIDUAL LIGAND-RECEPTOR PAIRS [J].
FLORIN, EL ;
MOY, VT ;
GAUB, HE .
SCIENCE, 1994, 264 (5157) :415-417
[9]  
Flory P.J., 1969, STAT MECH CHAIN MOL, V8, P699
[10]   THE ORGANIZATION OF TITIN FILAMENTS IN THE HALF-SARCOMERE REVEALED BY MONOCLONAL-ANTIBODIES IN IMMUNOELECTRON MICROSCOPY - A MAP OF 10 NONREPETITIVE EPITOPES STARTING AT THE Z-LINE EXTENDS CLOSE TO THE M-LINE [J].
FURST, DO ;
OSBORN, M ;
NAVE, R ;
WEBER, K .
JOURNAL OF CELL BIOLOGY, 1988, 106 (05) :1563-1572