Stimulus-dependent suppression of chaos in recurrent neural networks

被引:191
作者
Rajan, Kanaka [1 ]
Abbott, L. F. [2 ,3 ]
Sompolinsky, Haim [4 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Columbia Univ, Coll Phys & Surg, Dept Neurosci, New York, NY 10032 USA
[3] Columbia Univ, Coll Phys & Surg, Dept Physiol & Cellular Biophys, New York, NY 10032 USA
[4] Hebrew Univ Jerusalem, Racah Inst Phys, Interdisciplinary Ctr Neural Computat, IL-91904 Jerusalem, Israel
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 01期
基金
以色列科学基金会; 美国国家科学基金会;
关键词
RESPONSE VARIABILITY; NEURONAL NETWORKS; DYNAMICS; CELLS; SYNCHRONIZATION; CORTEX;
D O I
10.1103/PhysRevE.82.011903
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a "resonant" frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex [J].
Anderson, J ;
Lampl, I ;
Reichova, I ;
Carandini, M ;
Ferster, D .
NATURE NEUROSCIENCE, 2000, 3 (06) :617-621
[2]   Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex [J].
Anderson, JS ;
Lampl, I ;
Gillespie, DC ;
Ferster, D .
JOURNAL OF NEUROSCIENCE, 2001, 21 (06) :2104-2112
[3]  
[Anonymous], 2007, HDB CHAOS CONTROL
[4]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[5]   Real-time computation at the edge of chaos in recurrent neural networks [J].
Bertschinger, N ;
Natschläger, T .
NEURAL COMPUTATION, 2004, 16 (07) :1413-1436
[6]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[7]   Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons [J].
Brunel, N .
JOURNAL OF PHYSIOLOGY-PARIS, 2000, 94 (5-6) :445-463
[8]   Amplification of trial-to-trial response variability by neurons in visual cortex [J].
Carandini, M .
PLOS BIOLOGY, 2004, 2 (09) :1483-1493
[9]   Stimulus onset quenches neural variability: a widespread cortical phenomenon [J].
Churchland, Mark M. ;
Yu, Byron M. ;
Cunningham, John P. ;
Sugrue, Leo P. ;
Cohen, Marlene R. ;
Corrado, Greg S. ;
Newsome, William T. ;
Clark, Andrew M. ;
Hosseini, Paymon ;
Scott, Benjamin B. ;
Bradley, David C. ;
Smith, Matthew A. ;
Kohn, Adam ;
Movshon, J. Anthony ;
Armstrong, Katherine M. ;
Moore, Tirin ;
Chang, Steve W. ;
Snyder, Lawrence H. ;
Lisberger, Stephen G. ;
Priebe, Nicholas J. ;
Finn, Ian M. ;
Ferster, David ;
Ryu, Stephen I. ;
Santhanam, Gopal ;
Sahani, Maneesh ;
Shenoy, Krishna V. .
NATURE NEUROSCIENCE, 2010, 13 (03) :369-U25
[10]   Neural variability in premotor cortex provides a signature of motor preparation [J].
Churchland, MM ;
Yu, BM ;
Ryu, SI ;
Santhanam, G ;
Shenoy, KV .
JOURNAL OF NEUROSCIENCE, 2006, 26 (14) :3697-3712