Polchinski equation, reparameterization invariance and the derivative expansion

被引:52
作者
Comellas, J [1 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
关键词
renormalization group; fixed points; critical exponents;
D O I
10.1016/S0550-3213(97)00692-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The connection between the anomalous dimension and some invariance properties of the fixed point actions within exact RG is explored. As an application, the Polchinski equation at next-to-leading order in the derivative expansion is studied. For the Wilson fixed point of the one-component scalar theory in three dimensions we obtain the critical exponents eta = 0.042, nu = 0.622 and omega = 0.754. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:662 / 686
页数:25
相关论文
共 24 条
[21]   RENORMALIZATION GROUP EQUATION FOR CRITICAL PHENOMENA [J].
WEGNER, FJ ;
HOUGHTON, A .
PHYSICAL REVIEW A, 1973, 8 (01) :401-412
[22]   SOME INVARIANCE PROPERTIES OF RENORMALIZATION GROUP [J].
WEGNER, FJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (12) :2098-2108
[23]  
Wilson K. G., 1974, Physics Reports. Physics Letters Section C, V12c, P75, DOI 10.1016/0370-1573(74)90023-4
[24]  
ZINNJUSTIN J, 1993, QUANTUM FIELD THEORY