Correlation functions of higher-dimensional automatic sequences

被引:5
作者
Barbé, A [1 ]
von Haeseler, F [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 45期
关键词
D O I
10.1088/0305-4470/37/45/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A procedure for calculating the (auto)correlation function gamma(f) (k), k is an element of Z(m), of an m-dimensional complex-valued automatic sequence f : Z(m) --> C, is presented. This is done by deriving a recursion for the vector correlation function Gamma(ker(f)) (k) whose components are the (cross)correlation functions between all sequences in the finite set ker(f), the so-called kernel of f which contains all properly defined decimations of f. The existence of Gamma(ker(f))(k), which is defined as a limit, for all k is an element of Z(m), is shown to depend only on the existence of Gamma(ker(f)) (0). This is illustrated for the higher-dimensional Thue-Morse, paper folding and Rudin-Shapiro sequences.
引用
收藏
页码:10879 / 10898
页数:20
相关论文
共 13 条
[1]  
ALLOUCHE J, 1995, AUTOMATA AUTOMATIC S, P293
[2]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[3]  
Baake M., 2000, Directions in Mathematical Quasicrystals
[4]   Automatic sets and Delone sets [J].
Barbé, A ;
von Haeseler, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13) :4017-4038
[5]  
BARBE A, 2004, 0490 SCD SISTA DEP E
[6]   Substitution sequences in Zd with a non-simple Lebesgue component in the spectrum [J].
Frank, NP .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :519-532
[7]  
FRANK NP, 2004, IN PRESS P C DYN SYS
[8]   Surprises in diffuse scattering [J].
Höffe, M ;
Baake, M .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2000, 215 (08) :441-444
[9]  
Lind D. A., 1982, Ergod. Th. Dynam. Sys, V2, P49, DOI DOI 10.1017/S0143385700009573
[10]  
QUEFFELEC LM, 1987, LECT NOTES MATH, V1294