Endogenous control of waking brain rhythms induces neuroplasticity in humans

被引:143
作者
Ros, Tomas [1 ]
Munneke, Moniek A. M. [2 ]
Ruge, Diane [3 ]
Gruzelier, John H. [1 ]
Rothwell, John C. [3 ]
机构
[1] Univ London, Dept Psychol, London SE14 6NW, England
[2] Radboud Univ Nijmegen, Med Ctr, Dept Clin Neurophysiol, NL-6525 ED Nijmegen, Netherlands
[3] UCL, Inst Neurol, Sobell Dept Motor Neurosci & Movement Disorders, London, England
基金
英国医学研究理事会;
关键词
brain-computer interface (BCI); electroencephalogram (EEG); neurofeedback; neuroplasticity; primary motor cortex (M1); transcranial magnetic stimulation (TMS); TRANSCRANIAL MAGNETIC STIMULATION; LONG-TERM POTENTIATION; ALPHA-BAND; NEURONAL OSCILLATIONS; CORTICAL EXCITABILITY; SENSORIMOTOR CORTEX; PLASTICITY; NEUROFEEDBACK; INHIBITION; FREQUENCY;
D O I
10.1111/j.1460-9568.2010.07100.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This study explores the possibility of noninvasively inducing long-term changes in human corticomotor excitability by means of a brain-computer interface, which enables users to exert internal control over the cortical rhythms recorded from the scalp. We demonstrate that self-regulation of electroencephalogram rhythms in quietly sitting, naive humans significantly affects the subsequent corticomotor response to transcranial magnetic stimulation, producing durable and correlated changes in neurotransmission. Specifically, we show that the intrinsic suppression of alpha cortical rhythms can in itself produce robust increases in corticospinal excitability and decreases in intracortical inhibition of up to 150%, which last for at least 20 min. Our observations may have important implications for therapies of brain disorders associated with abnormal cortical rhythms, and support the use of electroencephalogram-based neurofeedback as a noninvasive tool for establishing a causal link between rhythmic cortical activities and their functions.
引用
收藏
页码:770 / 778
页数:9
相关论文
共 61 条
[1]   Metaplasticity: tuning synapses and networks for plasticity [J].
Abraham, Wickliffe C. .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (05) :387-399
[2]  
[Anonymous], BRAIN STIMUL
[3]   Mechanisms of use-dependent plasticity in the human motor cortex [J].
Bütefisch, CM ;
Davis, BC ;
Wise, SP ;
Sawaki, L ;
Kopylev, L ;
Classen, J ;
Cohen, LG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3661-3665
[4]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[5]   Neurofeedback for Autistic Spectrum Disorder: A Review of the Literature [J].
Coben, Robert ;
Linden, Michael ;
Myers, Thomas E. .
APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2010, 35 (01) :83-105
[6]   Plasticity in the human central nervous system [J].
Cooke, S. F. ;
Bliss, T. V. P. .
BRAIN, 2006, 129 :1659-1673
[7]   Brain-computer interfaces in neurological rehabilitation [J].
Daly, Janis J. ;
Wolpaw, Jonathan R. .
LANCET NEUROLOGY, 2008, 7 (11) :1032-1043
[8]   Cortical Plasticity Induced by Transcranial Magnetic Stimulation during Wakefulness Affects Electroencephalogram Activity during Sleep [J].
De Gennaro, Luigi ;
Fratello, Fabiana ;
Marzano, Cristina ;
Moroni, Fabio ;
Curcio, Giuseppe ;
Tempesta, Daniela ;
Pellicciari, Maria Concetta ;
Pirulli, Cornelia ;
Ferrara, Michele ;
Rossini, Paolo Maria .
PLOS ONE, 2008, 3 (06)
[9]   EEG changes accompanying learned regulation of 12-Hz EEG activity [J].
Delorme, A ;
Makeig, S .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) :133-137
[10]  
EZURE K, 1981, JPN J PHYSIOL, V31, P737