Heterochromatin-many flavours, common themes

被引:91
作者
Craig, JM [1 ]
机构
[1] Royal Childrens Hosp, Murdoch Childrens Res Inst, Chromosome Res Grp, Melbourne, Vic 3052, Australia
关键词
D O I
10.1002/bies.20145
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heterochromatin remains condensed throughout the cell cycle, is generally transcriptionally inert and is built and maintained by groups of factors with each group member sharing a similar function. In mammals, these groups include sequence-specific transcriptional repressors, functional RNA and proteins involved in DNA and histone methylation. Heterochromatin is cemented together via interactions within and between each protein group and is maintained by the cell's replication machinery. It can be constitutive (permanent) or facultative (developmentally regulated) and be any size, from a gene promotor to a whole genome. By studying the formation of facultative heterochromatin, we have gained information about how heterochromatin is assembled. We have discovered that there are many different architectural plans for the building of heterochromatin, leading to a seemingly never-ending variety of heterochromatic loci, with each built according to a general rule. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 107 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]   NuRD and SIN3 - histone deacetylase complexes in development [J].
Ahringer, J .
TRENDS IN GENETICS, 2000, 16 (08) :351-356
[3]   Neocentromeres: Role in human disease, evolution, and centromere study [J].
Amor, DJ ;
Choo, KHA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) :695-714
[4]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198
[5]   Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation [J].
Ayyanathan, K ;
Lechner, MS ;
Bell, P ;
Maul, GG ;
Schultz, DC ;
Yamada, Y ;
Tanaka, K ;
Torigoe, K ;
Rauscher, FJ .
GENES & DEVELOPMENT, 2003, 17 (15) :1855-1869
[6]   It's All in the Timing Linking S Phase to Chromatin Structure and Chromosome Dynamics [J].
Bailis, Julie M. ;
Forsburg, Susan L. .
CELL CYCLE, 2003, 2 (04) :303-306
[7]  
BICKMORE WA, 1995, J CELL SCI, V108, P2801
[8]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[9]   X-chromosome inactivation:: closing in on proteins that bind XistRNA [J].
Brockdorff, N .
TRENDS IN GENETICS, 2002, 18 (07) :352-358
[10]   Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division [J].
Brown, KE ;
Baxter, J ;
Graf, D ;
Merkenschlager, M ;
Fisher, AG .
MOLECULAR CELL, 1999, 3 (02) :207-217