共 31 条
Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.
被引:166
作者:
Tu, C
[1
]
Ma, LQ
[1
]
机构:
[1] Univ Florida, Soil & Water Sci Dept, Gainesville, FL 32611 USA
基金:
美国国家科学基金会;
关键词:
accumulation;
arsenate;
hyperaccumulator;
interaction;
phosphate;
Pteris vittata L;
D O I:
10.1023/A:1022837217092
中图分类号:
S3 [农学(农艺学)];
学科分类号:
0901 ;
摘要:
Arsenate and phosphate interactions are important for better understanding their uptake and accumulation by plant due to their similarities in chemical behaviors. The present study examined the effects of arsenate and phosphate on plant biomass and uptake of arsenate and phosphate by Chinese brake (Pteris vittata L.), a newly-discovered arsenic hyperaccumulator. The plants were grown for 20 weeks in a soil, which received the combinations of 670, 2670, or 5340 mumol kg(-1) arsenate and 800, 1600, or 3200 mumol kg(-1) phosphate, respectively. Interactions between arsenate and phosphate influenced their availability in the soil, and thus plant growth and uptake of arsenate and phosphate. At low and medium arsenate levels (670 and 2670 mumol kg(-1)), phosphate had slight effects on arsenate uptake by and growth of Chinese brake. However, phosphate substantially increased plant biomass and arsenate accumulation by alleviating arsenate phytotoxicity at high arsenate levels (5340 mumol kg(-1)). Moderate doses of arsenate increased plant phosphate uptake, but decreased phosphate concentrations at high doses because of its phytotoxicity. Based on our results, the minimum P/As molar ratios should be at least 1.2 in soil solution or 1.0 in fern fronds for the growth of Chinese brake. Our findings suggest that phosphate application may be an important strategy for efficient use of Chinese brake to phytoremediate arsenic contaminated soils. Further study is needed on the mechanisms of interactive effects of arsenate and phosphate on Chinese brake in hydroponic systems.
引用
收藏
页码:373 / 382
页数:10
相关论文