The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling

被引:1589
作者
An, Seong Jin [1 ,2 ]
Li, Jianlin [1 ]
Daniel, Claus [1 ,2 ]
Mohanty, Debasish [1 ]
Nagpure, Shrikant [1 ]
Wood, David L., III [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Energy & Transportat Sci Div, One Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, 418 Greve Hall,821 Volunteer Blvd, Knoxville, TN 37996 USA
关键词
SURFACE-FILM FORMATION; CARBONATE-BASED ELECTROLYTES; ATOMIC-FORCE MICROSCOPY; NITROGEN-DOPED CARBON; LI-ION; NEGATIVE ELECTRODE; PROPYLENE CARBONATE; FLUOROETHYLENE CARBONATE; ETHYLENE CARBONATE; NATURAL GRAPHITE;
D O I
10.1016/j.carbon.2016.04.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An in-depth historical and current review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, composition, electrochemistry, and formation mechanism. During initial LIB operation, the SEI layer forms on the graphite surfaces, the most common anode material. The SEI is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, rate capability, and safety. While the presence of the anode SEI is vital, it is difficult to control its formation and growth, as they depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and temperature. Thus, SEI formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the LIB development. This article covers the progression of knowledge regarding the SEI, from its discovery in 1979 to the current state of understanding, and covers differences in the chemical and structural makeup when cell materials and components are varied. It also discusses the relationship of the SEI layer to the LIB formation step, involving both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 76
页数:25
相关论文
共 259 条
[1]   DIRECTIONS IN SECONDARY LITHIUM BATTERY RESEARCH-AND-DEVELOPMENT [J].
ABRAHAM, KM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1233-1248
[2]   Analysis of the Deposit Layer from Electrolyte Side Reaction on the Anode of the Pouch Type Lithium Ion Polymer Batteries: The Effect of State of Charge and Charge Rate [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. ;
Fu, Rujian ;
Choe, Song-yul .
ELECTROCHIMICA ACTA, 2014, 149 :1-10
[3]   Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. ;
Fu, Rujian ;
Choe, Song-Yul .
JOURNAL OF POWER SOURCES, 2014, 270 :213-220
[4]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[5]   Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes [J].
Alliata, D ;
Kötz, R ;
Novák, P ;
Siegenthaler, H .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (06) :436-440
[6]   Factors responsible for impedance rise in high power lithium ion batteries [J].
Amine, K ;
Chen, CH ;
Liu, J ;
Hammond, M ;
Jansen, A ;
Dees, D ;
Bloom, I ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2001, 97-8 :684-687
[7]   LITHIUM ELECTRODE CYCLEABILITY AND MORPHOLOGY DEPENDENCE ON CURRENT-DENSITY [J].
ARAKAWA, M ;
TOBISHIMA, S ;
NEMOTO, Y ;
ICHIMURA, M ;
YAMAKI, J .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :27-35
[8]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[9]   Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy [J].
Augustsson, A ;
Herstedt, M ;
Guo, JH ;
Edström, K ;
Zhuang, GV ;
Ross, PN ;
Rubensson, JE ;
Nordgren, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (16) :4185-4189
[10]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86