The rate of entropy increase at the edge of chaos

被引:124
作者
Latora, V
Baranger, M
Rapisarda, A
Tsallis, C
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[2] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Univ Catania, Dipartmento Fis, I-95129 Catania, Italy
[6] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
[7] Univ N Texas, Dept Phys, Denton, TX 76203 USA
[8] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1016/S0375-9601(00)00484-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under certain conditions, the rate of increase of the statistical entropy of a simple, fully chaotic, conservative system is known to be given by a single number, characteristic of this system, the Kolmogorov-Sinai entropy rate. This connection is here generalized to a simple dissipative system, the logistic map, and especially to the chaos threshold of the latter, the edge of chaos. It is found that, in the edge-of-chaos case, the usual Boltzmann-Gibbs-Shannon entropy is not appropriate. Instead, the non-extensive entropy S-q = (1 - Sigma(i)(w) = (1) p(i)(q)) / (q - 1), must be used. The latter contains a parameter q, the entropic index which must be given a special value q* not equal 1 (for q = 1 one recovers the usual entropy) characteristic of the edge-of-chaos under consideration. The same q* enters also in the description of the sensitivity to initial conditions, as well as in that of the multifractal spectrum of the attractor. (C) 2000 Published by Elsevier Science B.V.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 45 条
[11]   Damage spreading in the 'sandpile' model of SOC [J].
Bhowal, A .
PHYSICA A, 1997, 247 (1-4) :327-330
[12]   A non extensive approach to the entropy of symbolic sequences [J].
Buiatti, M ;
Grigolini, P ;
Palatella, L .
PHYSICA A, 1999, 268 (1-2) :214-224
[13]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[14]  
CURADO EME, 1991, J PHYS A-MATH GEN, V24, P3187
[15]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[16]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[17]   Low-dimensional non-linear dynamical systems and generalized entropy [J].
da Silva, CR ;
da Cruz, HR ;
Lyra, ML .
BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (01) :144-152
[18]   SOME CHARACTERIZATIONS OF STRANGE SETS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :919-924
[19]   SCALING SPECTRA AND RETURN TIMES OF DYNAMIC-SYSTEMS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :925-932
[20]   GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :227-230