Transport mechanisms in acetylcholine and monoamine storage

被引:143
作者
Parsons, SM [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Program Biochem & Mol Biol, Santa Barbara, CA 93106 USA
关键词
vesicular acetylcholine transporter; vesicular monoamine transporter neurotransmitter transport;
D O I
10.1096/fj.00-0203rev
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sequence-related vesicular acetylcholine transporter (VAChT) and vesicular monoamine transporter (VMAT) transport neurotransmitter substrates into secretory vesicles. This review seeks to identify shared and differentiated aspects of the transport mechanisms. VAChT and VMAT exchange two protons per substrate molecule with very similar initial velocity kinetics and pH dependencies. However, vesicular gradients of ACh in vivo are much smaller than the driving force for uptake and vesicular gradients of monoamines, suggesting the existence of a regulatory mechanism in ACh storage not found in monoamine storage, The importance of microscopic rather than macroscopic kinetics in structure-function analysis is described, Transporter regions affecting binding or translocation of substrates, inhibitors, and protons have been found with photoaffinity labeling, chimeras, and single-site mutations, VAChT and VMAT exhibit partial structural and mechanistic homology with lactose permease, which belongs to the same sequence-defined superfamily, despite opposite directions of substrate transport. The vesicular transporters translocate the first proton using homologous aspartates in putative transmembrane domain X (ten), but they translocate the second proton using unknown residues that might not be conserved between them. Comparative analysis of the VAChT and VMAT transport mechanisms will aid understanding of regulation in neurotransmitter storage.
引用
收藏
页码:2423 / 2434
页数:12
相关论文
共 84 条
[51]  
PETER D, 1994, J BIOL CHEM, V269, P7231
[52]   Vesicular neurotransmitter transport and the presynaptic regulation of quantal size [J].
Reimer, RJ ;
Fon, EA ;
Edwards, RH .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :405-412
[53]  
ROGERS GA, 1989, MOL PHARMACOL, V36, P333
[54]   SYNTHESIS, INVITRO ACETYLCHOLINE-STORAGE-BLOCKING ACTIVITIES, AND BIOLOGICAL PROPERTIES OF DERIVATIVES AND ANALOGS OF TRANS-2-(4-PHENYLPIPERIDINO)CYCLOHEXANOL (VESAMICOL) [J].
ROGERS, GA ;
PARSONS, SM ;
ANDERSON, DC ;
NILSSON, LM ;
BAHR, BA ;
KORNREICH, WD ;
KAUFMAN, R ;
JACOBS, RS ;
KIRTMAN, B .
JOURNAL OF MEDICINAL CHEMISTRY, 1989, 32 (06) :1217-1230
[55]  
ROGERS GA, 1993, MOL PHARMACOL, V44, P633
[56]   Determination of transport parameters of permeant substrates of the vesicular amine transporter [J].
Romanenko, VG ;
Gebara, R ;
Miller, KM ;
Njus, D .
ANALYTICAL BIOCHEMISTRY, 1998, 257 (02) :127-133
[57]   Bioenergetics of neurotransmitter transport [J].
Rudnick, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (02) :173-185
[58]   ENERGETICS OF RESERPINE BINDING AND OCCLUSION BY THE CHROMAFFIN GRANULE BIOGENIC-AMINE TRANSPORTER [J].
RUDNICK, G ;
STEINERMORDOCH, SS ;
FISHKES, H ;
STERNBACH, Y ;
SCHULDINER, S .
BIOCHEMISTRY, 1990, 29 (03) :603-608
[59]  
RUDNICK G, 1989, J BIOL CHEM, V264, P14865
[60]   The photoactivatable inhibitor 7-azido-8-idoketanserin labels the N terminus of the vesicular monoamine transporter from bovine chromaffin granules [J].
Sagne, C ;
Isambert, MF ;
Vandekerckhove, J ;
Henry, JP ;
Gasnier, B .
BIOCHEMISTRY, 1997, 36 (11) :3345-3352