Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II

被引:92
作者
Roose, JL [1 ]
Pakrasi, HB [1 ]
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
关键词
D O I
10.1074/jbc.M408458200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Photosystem II (PSII) is a large membrane protein complex that catalyzes oxidation of water to molecular oxygen. During its normal function, PSII is damaged and frequently turned over. The maturation of the D1 protein, a key component in PSII, is a critical step in PSII biogenesis. The precursor form of D1 (pD1) contains a C-terminal extension, which is removed by the protease CtpA to yield PSII complexes with oxygen evolution activity. To determine the temporal position of D1 processing in the PSII assembly pathway, PSII complexes containing only pD1 were isolated from a CtpA-deficient strain of the cyanobacterium Synechocystis 6803. Although membranes from the mutant cell had nearly 50% manganese, no manganese was detected in isolated DeltactpAHT3 PSII, indicating a severely decreased manganese affinity. However, chlorophyll fluorescence decay kinetics after a single saturating flash suggested that the donor Y-Z was accessible to exogenous Mn2+ ions. Furthermore, the extrinsic proteins PsbO, PsbU, and PsbV were not present in PSII isolated from this mutant. However, PsbO and PsbV were present in mutant membranes, but the amount of PsbV protein was consistently less in the mutant membranes compared with the control membranes. We conclude that D1 processing precedes manganese binding and assembly of the extrinsic proteins into PSII. Interestingly, the Psb27 protein was found to be more abundant in DeltactpAHT3 PSII than in HT3 PSII, suggesting a possible role of Psb27 as an assembly factor during PSII biogenesis.
引用
收藏
页码:45417 / 45422
页数:6
相关论文
共 46 条
[11]  
Dennis C, 2000, NATURE, V408, P791
[12]  
Diner BA, 1998, METHOD ENZYMOL, V297, P337
[13]  
DINER BA, 1988, J BIOL CHEM, V263, P8972
[14]   Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation [J].
Diner, BA .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2001, 1503 (1-2) :147-163
[15]   Architecture of the photosynthetic oxygen-evolving center [J].
Ferreira, KN ;
Iverson, TM ;
Maghlaoui, K ;
Barber, J ;
Iwata, S .
SCIENCE, 2004, 303 (5665) :1831-1838
[16]   Photosystem II and photosynthetic oxidation of water: an overview [J].
Goussias, C ;
Boussac, A ;
Rutherford, AW .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 357 (1426) :1369-1381
[17]  
Ikeuchi M, 1995, PHOTOSYNTHESIS: FROM LIGHT TO BIOSPHERE, VOL III, P297
[18]   Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution [J].
Kamiya, N ;
Shen, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :98-103
[19]   Complete genomic sequence of the filamentous nitrogen-fixing Cyanobacterium anabaena sp strain PCC 7120 [J].
Kaneko, T ;
Nakamura, Y ;
Wolk, CP ;
Kuritz, T ;
Sasamoto, S ;
Watanabe, A ;
Iriguchi, M ;
Ishikawa, A ;
Kawashima, K ;
Kimura, T ;
Kishida, Y ;
Kohara, M ;
Matsumoto, M ;
Matsuno, A ;
Muraki, A ;
Nakazaki, N ;
Shimpo, S ;
Sugimoto, M ;
Takazawa, M ;
Yamada, M ;
Yasuda, M ;
Tabata, S .
DNA RESEARCH, 2001, 8 (05) :205-213
[20]   Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp PCC 6803 reveals the presence of novel polypeptides [J].
Kashino, Y ;
Lauber, WM ;
Carroll, JA ;
Wang, QJ ;
Whitmarsh, J ;
Satoh, K ;
Pakrasi, HB .
BIOCHEMISTRY, 2002, 41 (25) :8004-8012