Localized error bursts in estimating the state of spatiotemporal chaos

被引:4
作者
Baek, SJ [1 ]
Hunt, BR
Szunyogh, I
Zimin, A
Ott, E
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Meteorol, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
D O I
10.1063/1.1788091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of estimating the current state of an evolving spatiotemporally chaotic system from noisy observations of the system state and a model of the system dynamics. Using a simple scheme for state estimation, we show the possible occurrence of temporally and spatially intermittent large bursts in the estimation error. We discuss the similarity of these bursts with those occurring at the bubbling transition in the synchronization of low dimensional chaotic dynamical systems. We characterize the spatial and temporal behavior of the bursts and investigate how the behavior changes as we vary the number and location of the observations. (C) 2004 American Institute of Physics.
引用
收藏
页码:1042 / 1049
页数:8
相关论文
共 19 条
[1]  
Anderson B., 1979, OPTIMAL FILTERING
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]  
Daley R., 1991, Atmospheric data analysis
[6]  
Epstein I. R., 1998, INTRO NONLINEAR CHEM
[7]  
Kalnay E., 2003, ATMOSPHERIC MODELING
[8]  
Lorenz EN, 1998, J ATMOS SCI, V55, P399, DOI 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO
[9]  
2
[10]   SPIRAL DEFECT CHAOS IN LARGE ASPECT RATIO RAYLEIGH-BENARD CONVECTION [J].
MORRIS, SW ;
BODENSCHATZ, E ;
CANNELL, DS ;
AHLERS, G .
PHYSICAL REVIEW LETTERS, 1993, 71 (13) :2026-2029