Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide

被引:49
作者
Sharypova, LA
Niehaus, K
Scheidle, H
Holst, O
Becker, A
机构
[1] Univ Bielefeld, Fak Biol, Lehrstuhl Genet, Inst Genet, D-33501 Bielefeld, Germany
[2] Res Ctr Borstel, Ctr Med & Biosci, Div Struct Biochem, D-23845 Borstel, Germany
关键词
D O I
10.1074/jbc.M209389200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipid A is the hydrophobic anchor of lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. Lipid A of all Rhizobiaceae is acylated with a long fatty acid chain, 27-hydroxyoctacosanoic acid. Biosynthesis of this long acyl substitution requires a special acyl carrier protein, AcpXL, which serves as a donor of C28 (omega-1)-hydroxylated fatty acid for acylation of rhizobial lipid A (Brozek, K.A., Carlson, R.W., and Raetz, C. R. (1996) J. BioL Chem 271,32126-32136). To determine the biological function of the C28 acylation of lipid A, we constructed an acpXL mutant of Sinorhizobium meliloti strain 1021. Gas-liquid chromatography and mass spectrometry analysis of the fatty acid composition showed that the acpXL mutation indeed blocked C28 acylation of lipid A. SDS-PAGE analysis of acpXL mutant LPS revealed only a fast migrating band, rough LPS, whereas the parental strain 1021 manifested both rough and smooth LPS. Regardless of this, the LPS of parental and mutant strains had a similar sugar composition and exposed the same antigenic epitopes, implying that different electrophoretic profiles might account for different aggregation properties of LPS molecules with and without a long acyl chain. The acpXL mutant of strain 1021 displayed sensitivity to deoxycholate, delayed nodulation of Medicago sativa, and a reduced competitive ability. However, nodules elicited by this mutant on roots of M. sativa and Medicago truncatula had a normal morphology and fixed nitrogen. Thus, the C28 fatty acid moiety of lipid A is not crucial, but it is beneficial for establishing an effective symbiosis with host plants. acpXL lies upstream from a cluster of five genes, including msbB (lpxXL), which might be also involved in biosynthesis and transfer of the C28 fatty acid to the lipid A precursor.
引用
收藏
页码:12946 / 12954
页数:9
相关论文
共 56 条
[1]   Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides [J].
Albus, U ;
Baier, R ;
Holst, O ;
Pühler, A ;
Niehaus, K .
NEW PHYTOLOGIST, 2001, 151 (03) :597-606
[2]   Expression cloning and characterization of the C28 acyltransferase of lipid A biosynthesis in Rhizobium leguminosarum [J].
Basu, SS ;
Karbarz, MJ ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (32) :28959-28971
[3]  
BERINGER JE, 1974, J GEN MICROBIOL, V84, P188
[4]   OCCURRENCE OF LIPID-A VARIANTS WITH 27-HYDROXYOCTACOSANOIC ACID IN LIPOPOLYSACCHARIDES FROM MEMBERS OF THE FAMILY RHIZOBIACEAE [J].
BHAT, UR ;
MAYER, H ;
YOKOTA, A ;
HOLLINGSWORTH, RI ;
CARLSON, RW .
JOURNAL OF BACTERIOLOGY, 1991, 173 (07) :2155-2159
[5]   DEVELOPMENT OF THE LEGUME ROOT NODULE [J].
BREWIN, NJ .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :191-226
[6]   Lipopolysaccharide core glycosylation in Rhizobium leguminosarum - An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli [J].
Kadrmas, JL ;
Brozek, KA ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (50) :32119-32125
[7]   Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core [J].
Campbell, GRO ;
Reuhs, BL ;
Walker, GC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) :3938-3943
[8]   Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021 [J].
Capela, D ;
Barloy-Hubler, F ;
Gouzy, J ;
Bothe, G ;
Ampe, F ;
Batut, J ;
Boistard, P ;
Becker, A ;
Boutry, M ;
Cadieu, E ;
Dréano, S ;
Gloux, S ;
Godrie, T ;
Goffeau, A ;
Kahn, D ;
Kiss, E ;
Lelaure, V ;
Masuy, D ;
Pohl, T ;
Portetelle, D ;
Pühler, A ;
Purnelle, B ;
Ramsperger, U ;
Renard, C ;
Thébault, P ;
Vandenbol, M ;
Weidner, S ;
Galibert, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (17) :9877-9882
[9]   IDENTIFICATION AND CHARACTERIZATION OF LARGE PLASMIDS IN RHIZOBIUM-MELILOTI USING AGAROSE-GEL ELECTROPHORESIS [J].
CASSE, F ;
BOUCHER, C ;
JULLIOT, JS ;
MICHEL, M ;
DENARIE, J .
JOURNAL OF GENERAL MICROBIOLOGY, 1979, 113 (AUG) :229-242
[10]   Occurrence and taxonomic significance of oxo-fatty acids in lipopolysaccharides from members of Mesorhizobium [J].
Choma, A ;
Urbanik-Sypniewska, T ;
Russa, R ;
Kutkowska, J ;
Mayer, H .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 2000, 23 (02) :185-190