Land use induced changes of organic carbon storage in soils of China

被引:275
作者
Wu, HB
Guo, ZT
Peng, CH
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Inst Earth Environm, Xian 710075, Peoples R China
[3] Chinese Acad Sci, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China
[4] S Dakota Sch Mines & Technol, Inst Atmospher Sci, Rapid City, SD 57701 USA
关键词
carbon density; carbon pool; human activities; soil organic carbon loss;
D O I
10.1046/j.1365-2486.2003.00590.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that similar to 57% of the cultivated soil subgroups (similar to 31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non-irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to similar to 77.4 Pg (10(15) g) and similar to 8.8 kg C m(-2), respectively, compared to a SOC storage of similar to 70.3 Pg and an average SOC density of similar to 8.0 kg C m(-2) under the present-day conditions. This suggests a loss of similar to 7.1 Pg SOC and a decrease of similar to 0.8 kg C m(-2) SOC density due to increasing human activities, in which the loss in organic horizons has contributed to similar to 77%. This total loss of SOC in China induced by land use represents similar to 9.5% of the world's SOC decrease. This amount is equivalent to similar to 3.5 ppmv of the atmospheric CO2 increase. Since similar to 78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of similar to 50% of the lost SOC during the next 20-50 years, the soils in China would absorb similar to 3.5 Pg of carbon from the atmosphere.
引用
收藏
页码:305 / 315
页数:11
相关论文
共 62 条
[1]  
[Anonymous], 1988, SOIL MAP WORLD
[2]  
[Anonymous], CULTIVATION SYSTEM C
[3]  
Batjes NH, 2014, EUR J SOIL SCI, V65, P10, DOI [10.1111/j.1365-2389.1996.tb01386.x, 10.1111/ejss.12114_2]
[4]  
Bruce JP, 1999, J SOIL WATER CONSERV, V54, P382
[5]  
COLE C.V., 1996, CLIMATE CHANGE 1995, P1
[6]   CHANGES IN SOIL CARBON INVENTORIES FOLLOWING CULTIVATION OF PREVIOUSLY UNTILLED SOILS [J].
DAVIDSON, EA ;
ACKERMAN, IL .
BIOGEOCHEMISTRY, 1993, 20 (03) :161-193
[7]  
Duchaufour P., 1983, PEDOLOGIE, V1
[8]   Contribution of Monsoon Asia to the carbon budget of the biosphere, past and future [J].
Esser, G .
VEGETATIO, 1995, 121 (1-2) :175-188
[9]  
ESSER G, 1987, Tellus Series B Chemical and Physical Meteorology, V39, P245, DOI 10.1111/j.1600-0889.1987.tb00097.x
[10]   ORGANIC-CARBON IN SOILS OF THE WORLD [J].
ESWARAN, H ;
VANDENBERG, E ;
REICH, P .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (01) :192-194