On the solution sets of particular classes of linear interval systems

被引:34
作者
Alefeld, G
Kreinovich, V
Mayer, G
机构
[1] Univ Rostock, Fachbereich Math, D-18051 Rostock, Germany
[2] Univ Karlsruhe, Inst Angew Math, D-76128 Karlsruhe, Germany
[3] Univ Texas, Dept Comp Sci, El Paso, TX 79968 USA
关键词
linear systems; solution set; interval matrix; Oettli-Prager criterion; Fourier-Motzkin elimination; symmetric matrices; Hankel matrices; Toeplitz matrices;
D O I
10.1016/S0377-0427(02)00693-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the solution set S of real linear systems Ax = b by a set of inequalities if b lies between some given bounds (b) under bar, (b) over bar and if the n x n coefficient matrix A varies similarly between two bounds (A) under bar and (A) over bar. In addition, we restrict A to a particular class of matrices, for instance the class of the symmetric, the skew-symmetric, the persymmetric, the Toeplitz, and the Hankel matrices, respectively. In this way, we generalize the famous Oettli-Prager criterion (Numer. Math. 6 (1964) 405), results by Hartfiel (Numer. Math. 35 (1980) 355) and the contents of the papers (in: R.B. Kearfott, V. Kreinovich (Eds.), Applications of Interval Computations, Kluwer, Boston, MA, 1996, pp. 61-79) and (SIAM J. Matrix Anal. Appl. 18 (1997) 693). (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 11 条
[11]  
Schrijver Alexander, 1999, THEORY LINEAR INTEGE