Channel height dependent protein nucleation and crystal growth in microfluidic devices

被引:9
作者
Lounaci, Malika [1 ]
Chen, Yong [1 ,2 ]
Rigolet, Pascal [3 ]
机构
[1] Ecole Normale Super, CNRS, ENS, UPMC,UMR 8640, F-75231 Paris, France
[2] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Kyoto 6068507, Japan
[3] Univ Paris 11, Fac Pharm, Lab Dynam Microtubules Physiopathol, F-92296 Chatenay Malabry, France
关键词
Microfluidics; Protein crystallization; Nucleation; Crystal growth; NANOLITER PLUGS; CRYSTALLIZATION; DIFFUSION;
D O I
10.1016/j.mee.2009.11.154
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on results of a study of protein crystallization in microfluidic devices with different channel heights. Multilayer soft lithography has been used for the fabrication of devices with integrated microvalves and crystallization channels of height in the range from 15 mu m to 180 mu m. To demonstrate the channel height dependent nucleation and crystal growth, a standard batch crystallization solution composed of 60 mg/ml lysozyme, 100 mM acetate buffer pH 4.6 and 1.5 M NaCl was used with minimized sample quantity. Our results show that deep channels favorite the nucleation whereas shallow ones favorite the crystal growth. When the channel height is less than 50 mu m the number of lysozyme crystals is dramatically reduced whereas their mean size is increased. Furthermore, our results also show the feasibility of decoupling nucleation and crystal growth in a stair-like channel which should facilitate the appearance of single crystals suitable for X-ray diffraction. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:750 / 752
页数:3
相关论文
共 12 条
[1]   Phase knowledge enables rational screens for protein crystallization [J].
Anderson, Megan J. ;
Hansen, Carl L. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (45) :16746-16751
[2]   The prospects of protein nanocrystallography [J].
Bodenstaff, ER ;
Hoedemaeker, FJ ;
Kuil, ME ;
de Vrind, HPM ;
Abrahams, JP .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1901-1906
[3]   Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening [J].
Chen, Delai L. ;
Ismagilov, Rustem F. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (03) :226-231
[4]   A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion [J].
Hansen, CL ;
Skordalakes, E ;
Berger, JM ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16531-16536
[5]   Reversible assembling of microfluidic devices by aspiration [J].
Le Berre, M. ;
Crozatier, C. ;
Casquillas, G. Velve ;
Chen, Y. .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1284-1287
[6]   Microfluidic crystallization [J].
Leng, Jacques ;
Salmon, Jean-Baptiste .
LAB ON A CHIP, 2009, 9 (01) :24-34
[7]   Microfluidic device for protein crystallization under controlled humidity [J].
Lounaci, M. ;
Rigolet, P. ;
Abraham, C. ;
Le Berre, M. ;
Chen, Y. .
MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) :1758-1761
[8]   Toward a comparative study of protein crystallization in microfluidic chambers using vapor diffusion and batch techniques [J].
Lounaci, M. ;
Rigolet, P. ;
Casquillas, G. Velve ;
Huang, H. W. ;
Chen, Y. .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1673-1676
[9]   Monolithic microfabricated valves and pumps by multilayer soft lithography [J].
Unger, MA ;
Chou, HP ;
Thorsen, T ;
Scherer, A ;
Quake, SR .
SCIENCE, 2000, 288 (5463) :113-116
[10]  
VEESLER S, 2003, STP PHARM PRATIQUES, P13