Determination of size and concentration of gold nanoparticles from UV-Vis spectra

被引:3064
作者
Haiss, Wolfgang
Thanh, Nguyen T. K.
Aveyard, Jenny
Fernig, David G.
机构
[1] Univ Liverpool, Ctr Nanoscle Sci, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[2] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England
基金
英国医学研究理事会;
关键词
D O I
10.1021/ac0702084
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The dependence of the optical properties of spherical gold nanoparticles on particle size and wavelength were analyzed theoretically using multipole scattering theory, where the complex refractive index of gold was corrected for the effect of a reduced mean free path of the conduction electrons in small particles. To compare these theoretical results to experimental data, gold nanoparticles in the size range of 5 to 100 nm were synthesized and characterized with TEM and UV-vis. Excellent agreement was found between theory and experiment. It is shown that the data produced here can be used to determine both size and concentration of gold nanoparticles directly from UV-vis spectra. Equations for this purpose are derived, and the precision of various methods is discussed. The major aim of this work is to provide a simple and fast method to determine size and concentration of nanoparticles.
引用
收藏
页码:4215 / 4221
页数:7
相关论文
共 24 条
[1]  
Ashcroft N W., 1976, Solid State Physics
[2]   Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment [J].
Berciaud, S ;
Lasne, D ;
Blab, GA ;
Cognet, L ;
Lounis, B .
PHYSICAL REVIEW B, 2006, 73 (04)
[3]   Observation of intrinsic size effects in the optical response of individual gold nanoparticles [J].
Berciaud, S ;
Cognet, L ;
Tamarat, P ;
Lounis, B .
NANO LETTERS, 2005, 5 (03) :515-518
[4]   Differential light scattering spectroscopy for studying biospeciric assembling of gold nanoparticles with protein or oligonucleotide probes [J].
Bogatyrev, VA ;
Dykman, LA ;
Krasnov, YM ;
Plotnikov, VK ;
Khlebtsov, NG .
COLLOID JOURNAL, 2002, 64 (06) :671-680
[5]  
Bohren C. F., 1983, ABSORPTION SCATTERIN
[6]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[7]   Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J].
Brown, KR ;
Walter, DG ;
Natan, MJ .
CHEMISTRY OF MATERIALS, 2000, 12 (02) :306-313
[8]   SYNTHESIS AND REACTIONS OF FUNCTIONALIZED GOLD NANOPARTICLES [J].
BRUST, M ;
FINK, J ;
BETHELL, D ;
SCHIFFRIN, DJ ;
KIELY, C .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1995, (16) :1655-1656
[9]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[10]  
Debenham M., 1981, Journal of Physics E (Scientific Instruments), V14, P544, DOI 10.1088/0022-3735/14/5/004