Variable-free exploration of stochastic models: A gene regulatory network example

被引:56
作者
Erban, Radek
Frewen, Thomas A.
Wang, Xiao
Elston, Timothy C.
Coifman, Ronald
Nadler, Boaz
Kevrekidis, Ioannis G.
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Bioinformat & Computat Biol Program, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA
[5] Yale Univ, Dept Math, New Haven, CT 06520 USA
[6] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
基金
英国生物技术与生命科学研究理事会; 以色列科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1063/1.2718529
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [R. Erban , J. Chem. Phys. 124, 084106 (2006)] the authors assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e., effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [R. Coifman , Proc. Natl. Acad. Sci. U.S.A. 102, 7426 (2005)] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free, coarse-grained computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables. (c) 2007 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks [J].
Adalsteinsson, D ;
McMillen, D ;
Elston, TC .
BMC BIOINFORMATICS, 2004, 5 (1)
[2]  
BAKER C, 1977, NUMERICAL TREATMENT
[3]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[4]   Learning eigenfunctions links spectral embedding and kernel PCA [J].
Bengio, Y ;
Delalleau, O ;
Le Roux, N ;
Paiement, JF ;
Vincent, P ;
Ouimet, M .
NEURAL COMPUTATION, 2004, 16 (10) :2197-2219
[5]   The slow-scale stochastic simulation algorithm [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[6]   Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems [J].
Cao, Y ;
Gillespie, D ;
Petzold, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) :395-411
[7]   Binomial distribution based τ-leap accelerated stochastic simulation -: art. no. 024112 [J].
Chatterjee, A ;
Vlachos, DG ;
Katsoulakis, MA .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (02)
[8]  
Chung F., 2000, COMMUN ANAL GEOM, V8, P969, DOI [DOI 10.4310/CAG.2000.V8.N5.A2, 10.4310/CAG.2000.v8.n5.a2]
[9]   Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps [J].
Coifman, RR ;
Lafon, S ;
Lee, AB ;
Maggioni, M ;
Nadler, B ;
Warner, F ;
Zucker, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7426-7431
[10]   Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods [J].
Coifman, RR ;
Lafon, S ;
Lee, AB ;
Maggioni, M ;
Nadler, B ;
Warner, F ;
Zucker, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7432-7437