Variable-free exploration of stochastic models: A gene regulatory network example

被引:56
作者
Erban, Radek
Frewen, Thomas A.
Wang, Xiao
Elston, Timothy C.
Coifman, Ronald
Nadler, Boaz
Kevrekidis, Ioannis G.
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Bioinformat & Computat Biol Program, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27599 USA
[5] Yale Univ, Dept Math, New Haven, CT 06520 USA
[6] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
基金
英国生物技术与生命科学研究理事会; 以色列科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1063/1.2718529
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [R. Erban , J. Chem. Phys. 124, 084106 (2006)] the authors assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e., effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [R. Coifman , Proc. Natl. Acad. Sci. U.S.A. 102, 7426 (2005)] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free, coarse-grained computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables. (c) 2007 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 41 条
[31]  
Press W. H., 1992, NUMERICAL RECIPES C, V2nd ed., P994
[32]   Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm [J].
Rao, CV ;
Arkin, AP .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (11) :4999-5010
[33]   Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method [J].
Rathinam, M ;
Petzold, LR ;
Cao, Y ;
Gillespie, DT .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24) :12784-12794
[34]  
Risken H., 1989, FOKKER PLANCK EQUATI
[35]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[36]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[37]   Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions [J].
Salis, H ;
Kaznessis, Y .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (05)
[38]   Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration, and control via stochastic simulation [J].
Siettos, CI ;
Graham, MD ;
Kevrekidis, IG .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (22) :10149-10156
[39]   Coarse nonlinear dynamics and metastability of filling-emptying transitions: Water in carbon nanotubes [J].
Sriraman, S ;
Kevrekidis, IG ;
Hummer, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (13)
[40]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+