Trap-assisted hole injection and quantum efficiency enhancement in poly(9,9′ dioctylfluorene-alt-benzothiadiazole) polymer light-emitting diodes

被引:31
作者
Seeley, AJAB
Friend, RH
Kim, JS
Burroughes, JH
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] CDT Ltd, Cambridge CB3 0TX, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.1818350
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a reversible many-fold quantum efficiency enhancement during electrical driving of polymer light-emitting diodes (LEDs) containing poly(9,9(') dioctylfluorene-alt-benzothiadiazole) (F8BT), developing over several minutes or hours at low applied bias and recovering on similar time scales after driving. This phenomenon is observed only in devices containing F8BT as an emissive layer in pure or blended form, regardless of anode and cathode choices and even in the absence of a poly(styrene-sulphonate)-doped poly(3,4-ethylene-dioxythiophene) (PEDOT:PSS) layer. We report detailed investigations using a standardized device structure containing PEDOT:PSS and a calcium cathode. Direct measurements of trapped charge recovered from the device after driving significantly exceed the unipolar limit, and thermally activated relaxation suggests a maximum trap depth around 0.6 eV. Neither photoluminescence nor electroluminescence spectra reveal any change in the bulk optoelectronic properties of the emissive polymer nor any new emissive species. During the quantum efficiency (QE) enhancement process, the bulk conduction of the device increases. Reverse bias treatment of the device significantly reinforces the QE enhancement. Based on these observations, we propose a simple model in which interfacial dipoles are generated by trapped holes near the anode combining with injected electrons, to produce a narrow tunneling barrier for easy hole injection. The new injection pathway leads to a higher hole current density and thus a better charge injection balance. This produces the relatively high quantum efficiency observed in all F8BT LEDs. (C) 2004 American Institute of Physics.
引用
收藏
页码:7643 / 7649
页数:7
相关论文
共 21 条
[1]   LIGHT-INDUCED LUMINESCENCE QUENCHING IN PRECURSOR-ROUTE POLY(PARA-PHENYLENE VINYLENE) [J].
BRADLEY, DDC ;
FRIEND, RH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (23) :3671-3678
[2]   Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer [J].
Brown, TM ;
Kim, JS ;
Friend, RH ;
Cacialli, F ;
Daik, R ;
Feast, WJ .
APPLIED PHYSICS LETTERS, 1999, 75 (12) :1679-1681
[3]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[4]   Quantifying the efficiency of electrodes for positive carrier injection into poly(9,9-dioctylfluorene) and representative copolymers [J].
Campbell, AJ ;
Bradley, DDC ;
Antoniadis, H .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (06) :3343-3351
[5]   Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures [J].
Campbell, IH ;
Hagler, TW ;
Smith, DL ;
Ferraris, JP .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1900-1903
[6]   Ionic space-charge effects in polymer light-emitting diodes [J].
deMello, JC ;
Tessler, N ;
Graham, SC ;
Friend, RH .
PHYSICAL REVIEW B, 1998, 57 (20) :12951-12963
[7]   Triplet formation in polyfluorene devices [J].
Dhoot, AS ;
Greenham, NC .
ADVANCED MATERIALS, 2002, 14 (24) :1834-1837
[8]   Molecular-scale interface engineering for polymer light-emitting diodes [J].
Ho, PKH ;
Kim, JS ;
Burroughes, JH ;
Becker, H ;
Li, SFY ;
Brown, TM ;
Cacialli, F ;
Friend, RH .
NATURE, 2000, 404 (6777) :481-484
[9]   Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations [J].
Kim, JS ;
Ho, PKH ;
Greenham, NC ;
Friend, RH .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (02) :1073-1081
[10]   Phase separation in polyfluorene-based conjugated polymer blends: Lateral and vertical analysis of blend spin-cast thin films [J].
Kim, JS ;
Ho, PKH ;
Murphy, CE ;
Friend, RH .
MACROMOLECULES, 2004, 37 (08) :2861-2871