Convergence to the critical attractor of dissipative maps: Log-periodic oscillations, fractality, and nonextensivity

被引:83
作者
de Moura, FABF [1 ]
Tirnakli, U
Lyra, ML
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[2] Ege Univ, Fac Sci, Dept Phys, TR-35100 Izmir, Turkey
[3] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[4] Univ Fed Alagoas, Dept Fis, BR-57072970 Maceio, AL, Brazil
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6361
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For a family of logisticlike maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase-space volume occupied by the ensemble W(t) depicts a power-law decay with log-periodic oscillations reflecting the multifractal character of the critical attractor. We explore the parametric dependence of the power-law exponent and the amplitude of the log-periodic oscillations with the attractor's fractal dimension governed by the inflection of the map near its extremal point. Further, we investigate the temporal evolution of W(t) for the circle map whose critical attractor is dense. In this case, we found W(t) to exhibit a rich pattern with a slow logarithmic decay of the lower bounds. These results are discussed in the context of nonextensive Tsallis entropies.
引用
收藏
页码:6361 / 6365
页数:5
相关论文
共 24 条
[1]   UNIVERSAL SCALING OF THE STRESS-FIELD AT THE VICINITY OF A WEDGE CRACK IN 2 DIMENSIONS AND OSCILLATORY SELF-SIMILAR CORRECTIONS TO SCALING [J].
BALL, RC ;
BLUMENFELD, R .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1784-1787
[2]  
Beck C., 1993, THERMODYNAMICS CHAOT
[3]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[4]  
COULLET P, 1978, J PHYS PARIS C, V5, pC25
[5]   Low-dimensional non-linear dynamical systems and generalized entropy [J].
da Silva, CR ;
da Cruz, HR ;
Lyra, ML .
BRAZILIAN JOURNAL OF PHYSICS, 1999, 29 (01) :144-152
[6]   Imprints of log-periodic self-similarity in the stock market [J].
Drozdz, S ;
Ruf, F ;
Speth, J ;
Wójcik, M .
EUROPEAN PHYSICAL JOURNAL B, 1999, 10 (03) :589-593
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[9]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[10]   GLOBAL UNIVERSALITY AT THE ONSET OF CHAOS - RESULTS OF A FORCED RAYLEIGH-BENARD EXPERIMENT [J].
JENSEN, MH ;
KADANOFF, LP ;
LIBCHABER, A ;
PROCACCIA, I ;
STAVANS, J .
PHYSICAL REVIEW LETTERS, 1985, 55 (25) :2798-2801