Non-hermitian random matrix theory: Method of hermitian reduction

被引:191
作者
Feinberg, J [1 ]
Zee, A [1 ]
机构
[1] INST ADV STUDY,PRINCETON,NJ 08540
基金
美国国家科学基金会;
关键词
non-hermitian random matrices; non-Gaussian ensembles; deterministic plus random; the method of hermitization; non-hermitian Hamiltonians and localization;
D O I
10.1016/S0550-3213(97)00502-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider random non-hermitian matrices in the large-N limit. The power of analytic function theory cannot be brought to bear directly to analyze non-hermitian random matrices, in contrast to hermitian random matrices. To overcome this difficulty, we show that associated to each ensemble of non-hermitian matrices there is an auxiliary ensemble of random hermitian matrices which can be analyzed by the usual methods. We then extract the Green function and the density of eigenvalues of the non-hermitian ensemble from those of the auxiliary ensemble. We apply this ''method of hermitization'' to several examples, and discuss a number of related issues. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 49 条
  • [1] MULTILOOP CORRELATORS FOR 2-DIMENSIONAL QUANTUM-GRAVITY
    AMBJORN, J
    JURKIEWICZ, J
    MAKEENKO, YM
    [J]. PHYSICS LETTERS B, 1990, 251 (04) : 517 - 524
  • [2] AMBJORN J, 1990, HOUCHES
  • [3] BRANCHED POLYMERS FROM A DOUBLE-SCALING LIMIT OF MATRIX MODELS
    ANDERSON, A
    MYERS, RC
    PERIWAL, V
    [J]. NUCLEAR PHYSICS B, 1991, 360 (2-3) : 463 - 479
  • [4] COMPLEX RANDOM SURFACES
    ANDERSON, A
    MYERS, RC
    PERIWAL, V
    [J]. PHYSICS LETTERS B, 1991, 254 (1-2) : 89 - 93
  • [5] ANDREEV AV, 1994, NUCL PHYS B, V432, P485
  • [6] CORRELATION-FUNCTIONS IN DISORDERED-SYSTEMS
    BREZIN, E
    ZEE, A
    [J]. PHYSICAL REVIEW E, 1994, 49 (04): : 2588 - 2596
  • [7] Oscillating density of states near zero energy for matrices made of blocks with possible application to the random flux problem
    Brezin, E
    Hikami, S
    Zee, A
    [J]. NUCLEAR PHYSICS B, 1996, 464 (03) : 411 - 448
  • [8] RENORMALIZATION-GROUP APPROACH TO MATRIX MODELS
    BREZIN, E
    ZINNJUSTIN, J
    [J]. PHYSICS LETTERS B, 1992, 288 (1-2) : 54 - 58
  • [9] BREZIN E, 1993, CR ACAD SCI II, V317, P735
  • [10] PLANAR DIAGRAMS
    BREZIN, E
    ITZYKSON, C
    PARISI, G
    ZUBER, JB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) : 35 - 51