COMPLEX RANDOM SURFACES

被引:49
作者
ANDERSON, A
MYERS, RC
PERIWAL, V
机构
[1] MCGILL UNIV, DEPT PHYS, MONTREAL H3A 2T8, QUEBEC, CANADA
[2] UNIV CALIF SANTA BARBARA, INST THEORET PHYS, SANTA BARBARA, CA 93106 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1016/0370-2693(91)90401-B
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Several infinite sets of models of random surfaces, defined by means of integrals over matrix ensembles, are solved in a double-scaling limit. These models are exactly soluble in at least two distinct large N limits. The triangulated surfaces are complicated due to the existence of two distinct kinds of vertices in the triangulations. In one limit, the matrices possess a finite and fixed number of degrees of freedom as N becomes large - nevertheless, these models possess a nontrivial double-scaling limit. A special case of the other limit is known to describe two-dimensional quantum gravity.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 15 条
[1]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[2]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[3]  
BREZIN E, 1990, RU2590 RUTG PREPR
[4]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[5]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130
[6]  
GROSS DJ, 1989, PUPT1159 PRINC PREPR
[7]  
HARRIS G, 1990, EFI9030 U CHIC PREPR
[8]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[9]  
MORRIS TR, 1990, FERMILABPUB90121T PR
[10]   EXACTLY SOLVABLE SELF-DUAL STRINGS [J].
MYERS, RC ;
PERIWAL, V .
PHYSICAL REVIEW LETTERS, 1990, 64 (26) :3111-3114