High-Performance, Stretchable, Wire-Shaped Supercapacitors

被引:255
作者
Chen, Tao [1 ]
Hao, Rui [1 ]
Peng, Huisheng [2 ,3 ]
Dai, Liming [1 ]
机构
[1] Case Western Reserve Univ, Dept Macromol Sci & Engn, Ctr Adv Sci & Engn Carbon Case4 Carbon, Cleveland, OH 44106 USA
[2] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[3] Fudan Univ, Adv Mat Lab, Shanghai 200438, Peoples R China
基金
美国国家科学基金会;
关键词
conductive materials; nanotubes; polymers; scanning probe microscopy; wires; CARBON NANOTUBE FILMS; TRANSPARENT; PRESSURE; SKIN; ELECTRODE; MATRIX;
D O I
10.1002/anie.201409385
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7Fg(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics.
引用
收藏
页码:618 / 622
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 2013, Angew. Chem
[2]   Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance [J].
Antiohos, Dennis ;
Folkes, Glenn ;
Sherrell, Peter ;
Ashraf, Syed ;
Wallace, Gordon G. ;
Aitchison, Phil ;
Harris, Andrew T. ;
Chen, Jun ;
Minett, Andrew I. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (40) :15987-15994
[3]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[4]  
Chae SH, 2013, NAT MATER, V12, P403, DOI [10.1038/NMAT3572, 10.1038/nmat3572]
[5]  
Chen T., 2012, ANGEW CHEM, V124, P12143, DOI DOI 10.1002/ANGE.201207023
[6]   High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets [J].
Chen, Tao ;
Peng, Huisheng ;
Durstock, Michael ;
Dai, Liming .
SCIENTIFIC REPORTS, 2014, 4
[7]   Carbon nanomaterials for high-performance supercapacitors [J].
Chen, Tao ;
Dai, Liming .
MATERIALS TODAY, 2013, 16 (7-8) :272-280
[8]   An Integrated "Energy Wire" for both Photoelectric Conversion and Energy Storage [J].
Chen, Tao ;
Qiu, Longbin ;
Yang, Zhibin ;
Cai, Zhenbo ;
Ren, Jing ;
Li, Houpu ;
Lin, Huijuan ;
Sun, Xuemei ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) :11977-11980
[9]   Flexible, Light-Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell [J].
Chen, Tao ;
Wang, Shutao ;
Yang, Zhibin ;
Feng, Quanyou ;
Sun, Xuemei ;
Li, Li ;
Wang, Zhong-Sheng ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (08) :1815-1819
[10]   The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes [J].
Crispin, X. ;
Jakobsson, F. L. E. ;
Crispin, A. ;
Grim, P. C. M. ;
Andersson, P. ;
Volodin, A. ;
van Haesendonck, C. ;
Van der Auweraer, M. ;
Salaneck, W. R. ;
Berggren, M. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4354-4360