Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media

被引:42
作者
Kuo, CT [1 ]
Lin, CH [1 ]
Lo, AY [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan
关键词
carbon nanotubes; catalyst; cyclotron resonance CVD; magnetic recording; perpendicular recording media;
D O I
10.1016/S0925-9635(02)00231-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nano-sized magnetic particles were successfully used as the catalysts to synthesize magnetic metal-encapsulated carbon nanotubes (CNTs) or nanoparticles on Si wafers in a microwave plasma electron cyclotron resonance chemical vapor deposition (ECR-CVD) system with CH4 and/or H-2 as source gases. The magnetic catalyst materials, including Fe-Pt, Co-Pt, Nd2Fe14B, Fe and Fe-Ni, were first deposited on Si wafers by a physical vapor deposition (PVD) method, with subsequent plasma treatment for nanoparticle transformation. The main process parameters include catalyst materials, hydrogen plasma catalyst pretreatment and deposition temperature. For applications in magnetic media, the process has the following advantages: perpendicularly aligned CNTs or nanoparticles; tip-growth CNTs; well-distributed magnetic particles; detectable magnetic field in each particle; high tube number density (up to 134 Gtubes/inch(2) for Fe-assisted CNTs); favorable catalyst size; higher shape and induced anisotropy; and nanostructures that can be manipulated. The catalyst particle sizes of Fe, Nb2Fe14B and Fe-Pt (35-40 mn in diameter) are uniform and greater than but close to the critical optimum size or single domain size, which favor a higher coercive force. The greatest coercive force can reach 750 Oe for Fe-assisted CNTs at a deposition temperature of 715 degreesC, which is comparable with values reported in the literature. The coercive force difference between the vertical and horizontal directions can reach 300 Oe for Fe-assisted CNTs, and 355 Oe for Nb2Fe14B-assisted CNTs. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:799 / 805
页数:7
相关论文
共 15 条
[1]   Field emission, structure, cathodoluminescence and formation studies of carbon and Si-C-N nanotubes [J].
Chang, HL ;
Lin, CH ;
Kuo, CT .
DIAMOND AND RELATED MATERIALS, 2002, 11 (3-6) :793-798
[2]   Nanolithographically defined magnetic structures and quantum magnetic disk [J].
Chou, SY ;
Krauss, PR ;
Kong, LS .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) :6101-6106
[3]   Patterned magnetic nanostructures and quantized magnetic disks [J].
Chou, SY .
PROCEEDINGS OF THE IEEE, 1997, 85 (04) :652-671
[4]   Quantum magnetic disk [J].
Chou, SY ;
Krauss, PR .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 155 (1-3) :151-153
[5]   Enhanced magnetic coercivities in Fe nanowires [J].
Grobert, N ;
Hsu, WK ;
Zhu, YQ ;
Hare, JP ;
Kroto, HW ;
Walton, DRM ;
Terrones, M ;
Terrones, H ;
Redlich, P ;
Rühle, M ;
Escudero, R ;
Morales, F .
APPLIED PHYSICS LETTERS, 1999, 75 (21) :3363-3365
[6]   Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon [J].
Hayashi, T ;
Hirono, S ;
Tomita, M ;
Umemura, S .
NATURE, 1996, 381 (6585) :772-774
[7]   ANALYSIS FOR MAGNETIZATION MODE FOR HIGH-DENSITY MAGNETIC RECORDING [J].
IWASAKI, S ;
NAKAMURA, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1977, 13 (05) :1272-1277
[8]   ANALYSIS FOR CIRCULAR MODE OF MAGNETIZATION IN SHORT WAVELENGTH RECORDING [J].
IWASAKI, S ;
TAKEMURA, K .
IEEE TRANSACTIONS ON MAGNETICS, 1975, 11 (05) :1173-1175
[9]   Magnetic properties of nanostructured materials [J].
LesliePelecky, DL ;
Rieke, RD .
CHEMISTRY OF MATERIALS, 1996, 8 (08) :1770-1783
[10]   Polymerized carbon nanobells and their field-emission properties [J].
Ma, XC ;
Wang, EG ;
Zhou, WZ ;
Jefferson, DA ;
Chen, J ;
Deng, SZ ;
Xu, NS ;
Yuan, J .
APPLIED PHYSICS LETTERS, 1999, 75 (20) :3105-3107