Shared components of protein complexes-versatile building blocks or biochemical artefacts?

被引:33
作者
Krause, R [1 ]
von Mering, C
Bork, P
Dandekar, T
机构
[1] European Mol Biol Lab, D-69012 Heidelberg, Germany
[2] Cellzome AG, D-69117 Heidelberg, Germany
[3] Biozentrum, D-97074 Wurzburg, Germany
[4] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1002/bies.20141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein complexes perform many important functions in the cell. Large-scale studies of protein-protein interactions have not only revealed new complexes but have also placed many proteins into multiple complexes. Whilst the advocates of hypothesis-free research touted the discovery of these shared components as new links between diverse cellular processes, critical commentators denounced many of the findings as artefacts, thus questioning the usefulness of large-scale approaches. Here, we survey proteins known to be shared between complexes, as established in the literature, and compare them to shared components found in high-throughput screens. We discuss the various challenges to the identification and functional Interpretation of bona fide shared components, namely contaminants, variant and megacomplexes, and transient interactions, and suggest that many of the novel shared components found in high-throughput screens are neither the results of contamination nor central components, but appear to be primarily regulatory links in cellular processes. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:1333 / 1343
页数:11
相关论文
共 102 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   The cell as a collection of protein machines: Preparing the next generation of molecular biologists [J].
Alberts, B .
CELL, 1998, 92 (03) :291-294
[3]   Biological networks [J].
Alm, E ;
Arkin, AP .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (02) :193-202
[4]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029
[5]   The third dimension for protein interactions and complexes [J].
Aloy, P ;
Russell, RB .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (12) :633-638
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[8]   Analyzing yeast protein-protein interaction data obtained from different sources [J].
Bader, GD ;
Hogue, CWV .
NATURE BIOTECHNOLOGY, 2002, 20 (10) :991-997
[9]   Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J].
Bell, W ;
Sun, WN ;
Hohmann, S ;
Wera, S ;
Reinders, A ;
De Virgilio, C ;
Wiemken, A ;
Thevelein, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33311-33319
[10]   Protein interaction networks from yeast to human [J].
Bork, P ;
Jensen, LJ ;
von Mering, C ;
Ramani, AK ;
Lee, I ;
Marcotte, EM .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) :292-299