Diameter and morphology dependence on experimental conditions of carbon nanotube arrays grown by spray pyrolysis

被引:58
作者
Tapasztó, L
Kertész, K
Vértesy, Z
Horváth, ZE
Koós, AA
Osváth, Z
Sárközi, Z
Darabont, A
Biró, LP
机构
[1] Res Inst Tech Phys & Mat Sci, Nanotechnol Dept, H-1121 Budapest, Hungary
[2] Univ Babes Bolyai, Fac Phys, R-3400 Cluj Napoca, Romania
基金
匈牙利科学研究基金会;
关键词
carbon nanotubes; chemical vapor deposition; pyrolysis; scanning tunneling microscopy; transmission electron microscopy;
D O I
10.1016/j.carbon.2004.11.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A systematic study on the controlled growth of large areas of aligned multi-wall carbon nanotube arrays, from ferrocene-benzene precursor, and of nanotube junctions from ferrocene-thiophene precursor, without hydrogen addition, using an injection CVD method easy to scale up for industrial production is reported. A detailed study is presented of how the synthesis parameters such as growth temperature, active solution flow rate, catalyst concentration or sulfur addition can control the properties and morphology of the grown nanotube mat. Nanotube junctions with considerable yield can be grown with our method by adding sulfur to the synthesis process. The sulfur addition also results in growth of carbon nanocones (CNC) in the lower temperature regime of the furnace. Observation of single-wall carbon nanotubes in our STM investigations provides further indication that under properly chosen conditions SWCNTs can be grown with similar continuous processes. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:970 / 977
页数:8
相关论文
共 23 条
[11]   Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C [J].
Lee, YT ;
Kim, NS ;
Park, J ;
Han, JB ;
Choi, YS ;
Ryu, H ;
Lee, HJ .
CHEMICAL PHYSICS LETTERS, 2003, 372 (5-6) :853-859
[12]   Simulation of STM images of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes [J].
Mark, GI ;
Biro, LP ;
Gyulai, J .
PHYSICAL REVIEW B, 1998, 58 (19) :12645-12648
[13]   Synthesis of oriented nanotube films by chemical vapor deposition [J].
Mauron, P ;
Emmenegger, C ;
Züttel, A ;
Nützenadel, C ;
Sudan, P ;
Schlapbach, L .
CARBON, 2002, 40 (08) :1339-1344
[14]   Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols [J].
Mayne, M ;
Grobert, N ;
Terrones, M ;
Kamalakaran, R ;
Rühle, M ;
Kroto, HW ;
Walton, DRM .
CHEMICAL PHYSICS LETTERS, 2001, 338 (2-3) :101-107
[15]   Intrinsic electron transport properties of carbon nanotube Y-junctions [J].
Meunier, V ;
Nardelli, MB ;
Bernholc, J ;
Zacharia, T ;
Charlier, JC .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5234-5236
[16]   Miniaturized gas ionization sensors using carbon nanotubes [J].
Modi, A ;
Koratkar, N ;
Lass, E ;
Wei, BQ ;
Ajayan, PM .
NATURE, 2003, 424 (6945) :171-174
[17]   Y-junction carbon nanotubes [J].
Satishkumar, BC ;
Thomas, PJ ;
Govindaraj, A ;
Rao, CNR .
APPLIED PHYSICS LETTERS, 2000, 77 (16) :2530-2532
[18]   Nanoporous-carbon films for microsensor preconcentrators [J].
Siegal, MP ;
Overmyer, DL ;
Kottenstette, RJ ;
Tallant, DR ;
Yelton, WG .
APPLIED PHYSICS LETTERS, 2002, 80 (21) :3940-3942
[19]   Production of aligned carbon nanotubes by the CVD injection method [J].
Singh, C ;
Shaffer, M ;
Kinloch, I ;
Windle, A .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :339-340
[20]   Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method [J].
Singh, C ;
Shaffer, MS ;
Windle, AH .
CARBON, 2003, 41 (02) :359-368