Arabidopsis RING E3 Ligase XBAT32 Regulates Lateral Root Production through Its Role in Ethylene Biosynthesis

被引:89
作者
Prasad, Madhulika E. [1 ]
Schofield, Andrew [1 ]
Lyzenga, Wendy [1 ]
Liu, Hongxia [1 ]
Stone, Sophia L. [1 ]
机构
[1] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BOX PROTEIN TIR1; ABSCISIC-ACID; UBIQUITIN LIGASE; AUXIN TRANSPORT; FUNCTIONAL-ANALYSIS; RESPONSE PATHWAY; CELL ELONGATION; ZINC-FINGER; GROWTH; THALIANA;
D O I
10.1104/pp.110.156976
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
XBAT32, a member of the RING domain-containing ankyrin repeat subfamily of E3 ligases, was previously identified as a positive regulator of lateral root development. Arabidopsis (Arabidopsis thaliana) plants harboring a mutation in XBAT32 produce fewer lateral roots that wild-type plants. We found that xbat32 mutants produce significantly more ethylene than wildtype plants and that inhibition of ethylene biosynthesis or perception significantly increased xbat32 lateral root production. XBAT32 interacts with the ethylene biosynthesis enzymes AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE4 (ACS4) and ACS7 in yeast-two-hybrid assays. XBAT32 is capable of catalyzing the attachment of ubiquitin to both ACS4 and ACS7 in in vitro ubiquitination assays. These results suggest that XBAT32 negatively regulates ethylene biosynthesis by modulating the abundance of ACS proteins. Loss of XBAT32 may promote the stabilization of ACSs and lead to increased ethylene synthesis and suppression of lateral root formation. XBAT32 may also contribute to the broader hormonal cross talk that influences lateral root development. While auxin treatments only partially rescue the lateral root defect of xbat32, they completely restore wild-type levels of xbat32 lateral root production when coupled with ethylene inhibition. Abscisic acid, an antagonist of ethylene synthesis/signaling, was also found to stimulate rather than inhibit xbat32 lateral root formation, and abscisic acid acts synergistically with auxin to promote xbat32 lateral root production.
引用
收藏
页码:1587 / 1596
页数:10
相关论文
共 67 条
[1]  
Abramoff M.D., 2004, Biophotonics International, V11, P36
[2]  
Agatep R., 1998, TRANSFORMATION SACCH
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]   Interactions between abscisic acid and ethylene signaling cascades [J].
Beaudoin, N ;
Serizet, C ;
Gosti, F ;
Giraudat, J .
PLANT CELL, 2000, 12 (07) :1103-1115
[5]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[6]   POTENT INHIBITOR OF ETHYLENE ACTION IN PLANTS [J].
BEYER, EM .
PLANT PHYSIOLOGY, 1976, 58 (03) :268-271
[7]  
BOERJAN W, 1995, PLANT CELL, V7, P1405, DOI 10.1105/tpc.7.9.1405
[8]   Ubiquitin and the control of protein fate in the secretory and endocytic pathways [J].
Bonifacino, JS ;
Weissman, AM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :19-57
[9]   The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis [J].
Brady, SM ;
Sarkar, SF ;
Bonetta, D ;
McCourt, P .
PLANT JOURNAL, 2003, 34 (01) :67-75
[10]   Auxin transport promotes Arabidopsis lateral root initiation [J].
Casimiro, I ;
Marchant, A ;
Bhalerao, RP ;
Beeckman, T ;
Dhooge, S ;
Swarup, R ;
Graham, N ;
Inzé, D ;
Sandberg, G ;
Casero, PJ ;
Bennett, M .
PLANT CELL, 2001, 13 (04) :843-852