Tunneling splittings in vibrational spectra of non-rigid molecules VII. Globally uniform semiclassical wave functions within the instanton approach

被引:14
作者
Benderskii, VA [1 ]
Vetoshkin, EV
机构
[1] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia
[2] Univ J Fourier Grenoble, CNRS UMR 5578, Spectrometrie Phys Lab, F-380402 St Martin Dheres, France
关键词
multidimensional tunneling; tunneling splittings; semiclassical approximation; instanton approach; globally uniform wave functions;
D O I
10.1016/S0301-0104(00)00122-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The perturbative instanton approach developed in the previous papers of this series (V.A. Benderskii et al., Chem. Phys, 219 (1977) 119, 143; 234 (1998) 153, 173; 244 (1999) 273, 299) is shown to reproduce tunneling splittings in low-lying excited states of multiwell 1D potentials with the same accuracy as second-order perturbation theory for anharmonic oscillators. Instanton wave functions of highly excited states in these potentials are derived using the asymptotically smooth matching of semiclassical wave functions with solutions of the Schrodinger equation for the regions near the external and internal turning points. Multidimensional, globally uniform, semiclassical wave functions of both high and low energy states are expanded over a basis set including the above 1D functions and localized functions of small-amplitude motions coupled with the tunneling coordinate. The numerical procedure for the solution of multidimensional, deep tunneling problems is discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:203 / 221
页数:19
相关论文
共 53 条
[1]  
[Anonymous], 1991, Semiclassical Mechanics with Molecular Applications
[2]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[3]  
BENDERSKII V, 1994, CHEM DYNAMICS LOW TE
[4]   TUNNELING SPLITTINGS IN MODEL 2D POTENTIALS .1. V(X, Y) = V(0)(Y(2)-Y(0)2)(2)+1/2-OMEGA(1)2X(2)+1/4-ALPHA-X(4)+CX(2)Y(2) [J].
BENDERSKII, VA ;
GREBENSHCHIKOV, SY ;
MILNIKOV, GV ;
VETOSHKIN, EV .
CHEMICAL PHYSICS, 1994, 188 (01) :19-31
[5]   Tunneling splitting in vibrational spectra of non-rigid molecules .1. Perturbative instanton approach [J].
Benderskii, VA ;
Vetoshkin, EV ;
Grebenshchikov, SY ;
vonLaue, L ;
Trommsdorff, HP .
CHEMICAL PHYSICS, 1997, 219 (2-3) :119-142
[6]   Tunneling splitting in vibrational spectra of non-rigid molecules .2. Excited states [J].
Benderskii, VA ;
Vetoshkin, EV ;
vonLaue, L ;
Trommsdorff, HP .
CHEMICAL PHYSICS, 1997, 219 (2-3) :143-160
[7]   Tunneling splittings in vibrational spectra of non-rigid molecules - IV. Kinematic couplings [J].
Benderskii, VA ;
Vetoshkin, EV .
CHEMICAL PHYSICS, 1998, 234 (1-3) :173-194
[8]   Tunneling splittings in vibrational spectra of non-rigid molecules: III. Tunneling coordinate-dependent coupling between small amplitude motions [J].
Benderskii, VA ;
Vetoshkin, EV ;
Trommsdorff, HP .
CHEMICAL PHYSICS, 1998, 234 (1-3) :153-172
[9]   TUNNELING SPLITTINGS IN MODEL 2D POTENTIALS .2. V(X, Y)=LAMBDA(X(2)-X(0)(2))(2)-CX(2)(Y-Y-0)+1/2-OMEGA(2)(Y-Y-0+CX(0)(2)/OMEGA(2))(2)-C(2)X(0)(4)/2-OMEGA(2) [J].
BENDERSKII, VA ;
GREBENSHCHIKOV, SY ;
MILNIKOV, GV .
CHEMICAL PHYSICS, 1995, 194 (01) :1-18
[10]   TUNNELING SPLITTINGS IN MODEL 2D POTENTIALS .3. V(X,Y)=LAMBDA(X(2)-X(0)(2))-CXY+1/2KY(2)+(C-2/2K)X(2) [J].
BENDERSKII, VA ;
GREBENSHCHIKOV, SY ;
MILNIKOV, GV .
CHEMICAL PHYSICS, 1995, 198 (03) :281-295