PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression

被引:125
作者
Yin, YX
Liu, YX
Jin, YJ
Hall, EJ
Barrett, JC
机构
[1] Columbia Univ, Coll Phys & Surg, Dept Radiat Oncol, New York, NY 10032 USA
[2] NCI, Lab Biosyst & Canc, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature01519
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
p53 has a role in many cellular processes through the transcriptional regulation of target genes(1,2). PAC1 ( phosphatase of activated cells 1; also known as dual specificity phosphatase 2, DUSP2) is a dual threonine/tyrosine phosphatase that specifically dephosphorylates and inactivates mitogen-activated protein (MAP) kinases(3,4). Here we show that during apoptosis, p53 activates transcription of PAC1 by binding to a palindromic site in the PAC1 promoter. PAC1 transcription is induced in response to serum deprivation and oxidative stress, which results in p53-dependent apoptosis, but not in response to gamma-irradiation, which causes cell cycle arrest(5,6). Reduction of PAC1 transcription using small interfering RNA inhibits p53-mediated apoptosis, whereas overexpression of PAC1 increases susceptibility to apoptosis and suppresses tumour formation. Moreover, activation of p53 significantly inhibits MAP kinase activity. We conclude that, under specific stress conditions, p53 regulates transcription of PAC1 through a new p53-binding site, and that PAC1 is necessary and sufficient for p53-mediated apoptosis. Identification of a palindromic motif as a p53-binding site may reveal a novel mechanism whereby p53 regulates its target genes.
引用
收藏
页码:527 / 531
页数:5
相关论文
共 22 条
[1]   DEFICIENCY OF RETINOBLASTOMA PROTEIN LEADS TO INAPPROPRIATE S-PHASE ENTRY, ACTIVATION OF E2F-RESPONSIVE GENES, AND APOPTOSIS [J].
ALMASAN, A ;
YIN, YX ;
KELLY, RE ;
LEE, EYHP ;
BRADLEY, A ;
LI, WW ;
BERTINO, JR ;
WAHL, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (12) :5436-5440
[2]   SUPPRESSION OF HUMAN COLORECTAL-CARCINOMA CELL-GROWTH BY WILD-TYPE-P53 [J].
BAKER, SJ ;
MARKOWITZ, S ;
FEARON, ER ;
WILLSON, JKV ;
VOGELSTEIN, B .
SCIENCE, 1990, 249 (4971) :912-915
[3]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[4]   DEFINITION OF A CONSENSUS BINDING-SITE FOR P53 [J].
ELDEIRY, WS ;
KERN, SE ;
PIETENPOL, JA ;
KINZLER, KW ;
VOGELSTEIN, B .
NATURE GENETICS, 1992, 1 (01) :45-49
[5]  
ELDEIRY WS, 1995, CANCER RES, V55, P2910
[6]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[7]   A DNA-BINDING DOMAIN IS CONTAINED IN THE C-TERMINUS OF WILD-TYPE P53-PROTEIN [J].
FOORD, OS ;
BHATTACHARYA, P ;
REICH, Z ;
ROTTER, V .
NUCLEIC ACIDS RESEARCH, 1991, 19 (19) :5191-5198
[8]   Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain [J].
Gu, W ;
Roeder, RG .
CELL, 1997, 90 (04) :595-606
[9]   A MAMMALIAN-CELL CYCLE CHECKPOINT PATHWAY UTILIZING P53 AND GADD45 IS DEFECTIVE IN ATAXIA-TELANGIECTASIA [J].
KASTAN, MB ;
ZHAN, QM ;
ELDEIRY, WS ;
CARRIER, F ;
JACKS, T ;
WALSH, WV ;
PLUNKETT, BS ;
VOGELSTEIN, B ;
FORNACE, AJ .
CELL, 1992, 71 (04) :587-597
[10]   p53, the cellular gatekeeper for growth and division [J].
Levine, AJ .
CELL, 1997, 88 (03) :323-331