Granger causality revisited

被引:81
作者
Friston, Karl J. [1 ]
Bastos, Andre M. [2 ,3 ,4 ]
Oswal, Ashwini [1 ]
van Wijk, Bernadette [1 ]
Richter, Craig [4 ]
Litvak, Vladimir [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[2] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA
[3] Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA
[4] Max Planck Gesell, Ernst Strungmann Inst Cooperat, D-60528 Frankfurt, Germany
基金
英国惠康基金;
关键词
Granger causality; Dynamic causal modelling; Effective connectivity; Functional connectivity; Dynamics; Cross spectra; Neurophysiology; TIME-SERIES; INFORMATION-FLOW; EVOKED-RESPONSES; INFERENCE; BRAIN; CONNECTIVITY; COHERENCE; NETWORKS; FEEDBACK; TOOLBOX;
D O I
10.1016/j.neuroimage.2014.06.062
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality - providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes - as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:796 / 808
页数:13
相关论文
共 36 条
[1]   The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference [J].
Barnett, Lionel ;
Seth, Anil K. .
JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 :50-68
[2]   Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables [J].
Barnett, Lionel ;
Barrett, Adam B. ;
Seth, Anil K. .
PHYSICAL REVIEW LETTERS, 2009, 103 (23)
[3]   Canonical Microcircuits for Predictive Coding [J].
Bastos, Andre M. ;
Usrey, W. Martin ;
Adams, Rick A. ;
Mangun, George R. ;
Fries, Pascal ;
Friston, Karl J. .
NEURON, 2012, 76 (04) :695-711
[4]   Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State [J].
Boly, Melanie ;
Garrido, Marta Isabel ;
Gosseries, Olivia ;
Bruno, Marie-Aurelie ;
Boveroux, Pierre ;
Schnakers, Caroline ;
Massimini, Marcello ;
Litvak, Vladimir ;
Laureys, Steven ;
Friston, Karl J. .
SCIENCE, 2011, 332 (6031) :858-862
[5]   Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas [J].
Bosman, Conrado A. ;
Schoffelen, Jan-Mathijs ;
Brunet, Nicolas ;
Oostenveld, Robert ;
Bastos, Andre M. ;
Womelsdorf, Thilo ;
Rubehn, Birthe ;
Stieglitz, Thomas ;
De Weerd, Peter ;
Fries, Pascal .
NEURON, 2012, 75 (05) :875-888
[6]   Dynamic causal modelling of precision and synaptic gain in visual perception - an EEG study [J].
Brown, Harriet R. ;
Friston, Karl J. .
NEUROIMAGE, 2012, 63 (01) :223-231
[7]   Laminar differences in gamma and alpha coherence in the ventral stream [J].
Buffalo, Elizabeth A. ;
Fries, Pascal ;
Landman, Rogier ;
Buschman, Timothy J. ;
Desimone, Robert .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (27) :11262-11267
[8]  
Bullmore ET, 2001, HUM BRAIN MAPP, V12, P61, DOI 10.1002/1097-0193(200102)12:2<61::AID-HBM1004>3.0.CO
[9]  
2-W
[10]   Dynamic causal modelling: A critical review of the biophysical and statistical foundations [J].
Daunizeau, J. ;
David, O. ;
Stephan, K. E. .
NEUROIMAGE, 2011, 58 (02) :312-322