A scaling normalization method for differential expression analysis of RNA-seq data

被引:5232
作者
Robinson, Mark D. [1 ,2 ]
Oshlack, Alicia [1 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
[2] St Vincents Hosp, Garvan Inst Med Res, Canc Program, Epigenet Lab, Darlinghurst, NSW 2010, Australia
来源
GENOME BIOLOGY | 2010年 / 11卷 / 03期
基金
英国医学研究理事会;
关键词
HOUSEKEEPING GENES; MICROARRAY DATA; TRANSCRIPTOME; BIOCONDUCTOR; MODEL; BIOLOGY; SAGE; BIAS;
D O I
10.1186/gb-2010-11-3-r25
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The fine detail provided by sequencing-based transcriptome surveys suggests that RNA-seq is likely to become the platform of choice for interrogating steady state RNA. In order to discover biologically important changes in expression, we show that normalization continues to be an essential step in the analysis. We outline a simple and effective method for performing normalization and show dramatically improved results for inferring differential expression in simulated and publicly available data sets.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data [J].
Balwierz, Piotr J. ;
Carninci, Piero ;
Daub, Carsten O. ;
Kawai, Jun ;
Hayashizaki, Yoshihide ;
Van Belle, Werner ;
Beisel, Christian ;
van Nimwegen, Erik .
GENOME BIOLOGY, 2009, 10 (07)
[2]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[3]  
BULLARD JH, 2009, UC BERKELEY DIVISION
[4]  
Casella G., 2002, Statistical inference, V2nd edition
[5]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619
[6]   Evidence Based Selection of Housekeeping Genes [J].
de Jonge, Hendrik J. M. ;
Fehrmann, Rudolf S. N. ;
de Bont, Eveline S. J. M. ;
Hofstra, Robert M. W. ;
Gerbens, Frans ;
Kamps, Willem A. ;
de Vries, Elisabeth G. E. ;
van der Zee, Ate G. J. ;
Meerman, Gerard J. te ;
ter Elst, Arja .
PLOS ONE, 2007, 2 (09)
[7]   BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis [J].
Durinck, S ;
Moreau, Y ;
Kasprzyk, A ;
Davis, S ;
De Moor, B ;
Brazma, A ;
Huber, W .
BIOINFORMATICS, 2005, 21 (16) :3439-3440
[8]   Human housekeeping genes are compact [J].
Eisenberg, E ;
Levanon, EY .
TRENDS IN GENETICS, 2003, 19 (07) :362-365
[9]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[10]   Exploration, normalization, and summaries of high density oligonucleotide array probe level data [J].
Irizarry, RA ;
Hobbs, B ;
Collin, F ;
Beazer-Barclay, YD ;
Antonellis, KJ ;
Scherf, U ;
Speed, TP .
BIOSTATISTICS, 2003, 4 (02) :249-264