An axiomatic approach to image interpolation

被引:237
作者
Caselles, V [1 ]
Morel, JM
Sbert, C
机构
[1] Univ Illes Balears, Dept Math & Informat, Palma de Mallorca 07071, Spain
[2] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
关键词
D O I
10.1109/83.661188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The absolute minimal Lipschitz extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range.
引用
收藏
页码:376 / 386
页数:11
相关论文
共 26 条
  • [11] MOTION OF LEVEL SETS BY MEAN-CURVATURE .1.
    EVANS, LC
    SPRUCK, J
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) : 635 - 681
  • [12] Gilbarg D., 1983, Elliptic partial differential equations of second order, V224
  • [13] GUICHARD F, P ICIP 95
  • [14] HAVENS WS, 1984, IMPROVED OPERATOR ED
  • [15] UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT
    JENSEN, R
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) : 51 - 74
  • [16] Ladyzhenskaja O. A., 1968, T MATH MONOGRAPHS, V23
  • [17] LEFLOCH H, 1996, P INT C IM PROC ICIP, V3, P379
  • [18] THEORY OF EDGE-DETECTION
    MARR, D
    HILDRETH, E
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1980, 207 (1167): : 187 - 217
  • [19] Marr D., 1982, VISIO
  • [20] POWELL MJD, IN PRESS STATE ART N