Mechanistic diversity in a metalloenzyme superfamily

被引:158
作者
Armstrong, RN
机构
[1] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Sch Med, Dept Chem, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Sch Med, Ctr Mol Toxicol, Nashville, TN 37232 USA
关键词
D O I
10.1021/bi001814v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is now appreciated that the relationships of proteins, particularly enzymes, within a protein superfamily can be understood not only in terms of their sequence similarities and three-dimensional structures but also by chemical threads that relate their functional attributes. The mechanistic ties among superfamily members can often be traced to a common transition state for the rate-limiting step of the reactions being catalyzed. This paper presents an analysis of a metalloenzyme superfamily, the members of which catalyze a very diverse set of reactions with unrelated transition states but a more general common mechanistic imperative. The vicinal oxygen chelate (VOC) superfamily is composed of structurally related proteins with paired beta alpha beta beta beta motifs that provide a metal coordination environment with two or three open or readily accessible coordination sites to promote direct electrophilic participation of the metal ion in catalysis. The known types of reactions that are catalyzed include isomerizations (glyoxalase I), epimerizations (methylmalonyl-CoA epimerase), oxidative cleavage of C-C bonds (extradiol dioxygenase), and nucleophilic substitutions (fosfomycin resistance proteins). The remarkable access to mechanism space that is provided by the VOC superfamily appears to derive from a simple, pseudosymmetric structural fold that maximizes the catalytic versatility of the metal center.
引用
收藏
页码:13625 / 13632
页数:8
相关论文
共 36 条
[1]   FORMATION OF AN ADDUCT BETWEEN FOSFOMYCIN AND GLUTATHIONE - A NEW MECHANISM OF ANTIBIOTIC-RESISTANCE IN BACTERIA [J].
ARCA, P ;
RICO, M ;
BRANA, AF ;
VILLAR, CJ ;
HARDISSON, C ;
SUAREZ, JE .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1988, 32 (10) :1552-1556
[2]  
Armstrong RN, 1999, BIOM HLTH R, V27, P215
[3]   The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids [J].
Babbitt, PC ;
Hasson, MS ;
Wedekind, JE ;
Palmer, DRJ ;
Barrett, WC ;
Reed, GH ;
Rayment, I ;
Ringe, D ;
Kenyon, GL ;
Gerlt, JA .
BIOCHEMISTRY, 1996, 35 (51) :16489-16501
[4]   Understanding enzyme superfamilies - Chemistry as the fundamental determinant in the evolution of new catalytic activities [J].
Babbitt, PC ;
Gerlt, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30591-30594
[5]   All in the family: Structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly [J].
Bergdoll, M ;
Eltis, LD ;
Cameron, AD ;
Dumas, P ;
Bolin, JT .
PROTEIN SCIENCE, 1998, 7 (08) :1661-1670
[6]   Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA) [J].
Bernat, BA ;
Laughlin, LT ;
Armstrong, RN .
BIOCHEMISTRY, 1999, 38 (23) :7462-7469
[7]   Regiochemical and stereochemical course of the reaction catalyzed by the fosfomycin resistance protein, FosA [J].
Bernat, BA ;
Laughlin, LT ;
Armstrong, RN .
JOURNAL OF ORGANIC CHEMISTRY, 1998, 63 (11) :3778-3780
[8]   Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases [J].
Bernat, BA ;
Laughlin, LT ;
Armstrong, RN .
BIOCHEMISTRY, 1997, 36 (11) :3050-3055
[9]   Crystal structure of human glyoxalase .1. Evidence for gene duplication and 3D domain swapping [J].
Cameron, AD ;
Olin, B ;
Ridderstrom, M ;
Mannervik, B ;
Jones, TA .
EMBO JOURNAL, 1997, 16 (12) :3386-3395
[10]   Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue [J].
Cameron, AD ;
Ridderström, M ;
Olin, B ;
Kavarana, MJ ;
Creighton, DJ ;
Mannervik, B .
BIOCHEMISTRY, 1999, 38 (41) :13480-13490