Microscopic dynamics underlying anomalous diffusion

被引:42
作者
Kaniadakis, G [1 ]
Lapenta, G
机构
[1] Politecn Torino, Ist Nazl Fis Mat, Unita Politecn Torino, I-10129 Turin, Italy
[2] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
[3] Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3246
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The time-dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the literature as the solution of a nonlinear Fokker-Planck (FP) equation [A.R. Plastino and A. Plastino, Physica A 222, 347 (1995)]. The scope of the present paper is twofold. First, we show that this distribution can be obtained also as a solution of the nonlinear porous media equation. Second, we prove that the time-dependent Tsallis distribution can be obtained also as a solution of a linear FP equation [G. Kaniadakis and P. Quarati, Physica A 237, 229 (1997)] with coefficients depending on the velocity, which describes a generalized Brownian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard Langevin equation in the presence of multiplicative noise.
引用
收藏
页码:3246 / 3249
页数:4
相关论文
共 12 条
[1]   The nonlinear Fokker-Planck equation with state-dependent diffusion - a nonextensive maximum entropy approach [J].
Borland, L ;
Pennini, F ;
Plastino, AR ;
Plastino, A .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (02) :285-297
[2]   Microscopic dynamics of the nonlinear Fokker-Planck equation: A phenomenological model [J].
Borland, L .
PHYSICAL REVIEW E, 1998, 57 (06) :6634-6642
[3]   Anomalous diffusion in linear shear flows [J].
Compte, A ;
Jou, D ;
Katayama, Y .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1023-1030
[4]   Polynomial expansion of diffusion and drift coefficients for classical and quantum statistics [J].
Kaniadakis, G ;
Quarati, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 237 (1-2) :229-239
[5]   Nonlinear Fokker-Planck equations and generalized entropies [J].
Martinez, S ;
Plastino, AR ;
Plastino, A .
PHYSICA A, 1998, 259 (1-2) :183-192
[6]   Non-extensive statistical mechanics and generalized Fokker-Planck equation [J].
Plastino, AR ;
Plastino, A .
PHYSICA A, 1995, 222 (1-4) :347-354
[7]  
RISKEN H, 1989, FOKKERPLANCK EQUATIO
[8]   Aging in models of nonlinear diffusion [J].
Stariolo, DA .
PHYSICAL REVIEW E, 1997, 55 (04) :4806-4809
[9]   THE LANGEVIN AND FOKKER-PLANCK EQUATIONS IN THE FRAMEWORK OF A GENERALIZED STATISTICAL-MECHANICS [J].
STARIOLO, DA .
PHYSICS LETTERS A, 1994, 185 (03) :262-264
[10]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487