The transcription factor SREBP-1c is instrumental in the development of β-cell dysfunction

被引:79
作者
Wang, HY [1 ]
Maechler, P [1 ]
Antinozzi, PA [1 ]
Herrero, L [1 ]
Hagenfeldt-Johansson, KA [1 ]
Björklund, A [1 ]
Wollheim, CB [1 ]
机构
[1] Ctr Med Univ Geneva, Dept Internal Med, Div Clin Biochem, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1074/jbc.M212488200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Accumulation of lipids in non-adipose tissues is often associated with Type 2 diabetes and its complications. Elevated expression of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), has been demonstrated in islets and liver of diabetic animals. To elucidate the molecular mechanisms underlying SREBP-1c-induced beta-cell dysfunction, we employed the Tet-On inducible system to achieve tightly controlled and conditional expression of the nuclear active form of SREBP-1c (naSREBP-1c) in INS-1 cells. Controlled expression of naSREBP-1c induced massive accumulation of lipid droplets and blunted nutrient-stimulated insulin secretion in INS-1 cells. K+-evoked insulin exocytosis was unaltered. Quantification of the gene expression profile in this INS-1 stable clone revealed that naSREBP-1c induced beta-cell dysfunction by targeting multiple genes dedicated to carbohydrate metabolism, lipid biosynthesis, cell growth, and apoptosis. naSREBP-1c elicits cell growth-arrest and eventually apoptosis. We also found that the SREBP-1c processing in beta-cells was irresponsive to acute stimulation of glucose and insulin, which was distinct from that in lipogenic tissues. However, 2-day exposure to these agents promoted SREBP-1c processing. Therefore, the SREBP-1c maturation could be implicated in the pathogenesis of beta-cell glucolipotoxicity.
引用
收藏
页码:16622 / 16629
页数:8
相关论文
共 73 条
[1]   Stimulation of acetyl-CoA carboxylase gene expression by glucose requires insulin release and sterol regulatory element binding protein 1c in pancreatic MIN6 β-cells [J].
Andreolas, C ;
Xavier, GD ;
Diraison, F ;
Zhao, C ;
Varadi, A ;
Lopez-Casillas, F ;
Ferré, P ;
Foufelle, F ;
Rutter, GA .
DIABETES, 2002, 51 (08) :2536-2545
[2]   ESTABLISHMENT OF 2-MERCAPTOETHANOL-DEPENDENT DIFFERENTIATED INSULIN-SECRETING CELL-LINES [J].
ASFARI, M ;
JANJIC, D ;
MEDA, P ;
LI, GD ;
HALBAN, PA ;
WOLLHEIM, CB .
ENDOCRINOLOGY, 1992, 130 (01) :167-178
[3]   PARTIAL PANCREATECTOMY IN THE RAT AND SUBSEQUENT DEFECT IN GLUCOSE-INDUCED INSULIN RELEASE [J].
BONNERWEIR, S ;
TRENT, DF ;
WEIR, GC .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 71 (06) :1544-1553
[4]   The uncoupling proteins, a review [J].
Boss, O ;
Muzzin, P ;
Giacobino, JP .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 1998, 139 (01) :1-9
[5]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[6]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110
[7]   Interactions between insulin resistance and insulin secretion in the development of glucose intolerance [J].
Cavaghan, MK ;
Ehrmann, DA ;
Polonsky, KS .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (03) :329-333
[8]  
Diomede L, 2001, EUR CYTOKINE NETW, V12, P625
[9]   Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes [J].
Foretz, M ;
Guichard, C ;
Ferré, P ;
Foufelle, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12737-12742
[10]   Diabetes - Fat in all the wrong places [J].
Friedman, J .
NATURE, 2002, 415 (6869) :268-269