The Wigner function for general Lie groups and the wavelet transform

被引:58
作者
Ali, ST [1 ]
Atakishiyev, NM
Chumakov, SM
Wolf, KB
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Cuernavaca, Morelos, Mexico
[3] Univ Guadalajara, Dept Ciencias Basicas, Mexico City, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
ANNALES HENRI POINCARE | 2000年 / 1卷 / 04期
关键词
D O I
10.1007/PL00001012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We build Wigner maps, functions and operators on general phase spaces arising from a class of Lie groups, including non-unimodular groups (such as the affine group). The phase spaces are coadjoint orbits in the dual of the Lie algebra of these groups and they come equipped with natural symplectic structures and Liouville-type invariant measures. When the group admits square-integrable representations, we present a very general construction of a Wigner function which enjoys all the desirable properties, including full covariance and reconstruction formulae. We study in detail the case of the affine group on the line. In particular, we put into focus the close connection between the well-known wavelet transform and the Wigner function on such groups.
引用
收藏
页码:685 / 714
页数:30
相关论文
共 38 条
[1]   ENTROPY, WIGNER DISTRIBUTION FUNCTION, AND APPROACH TO EQUILIBRIUM OF A SYSTEM OF COUPLED HARMONIC OSCILLATORS [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1971, 3 (02) :828-&
[2]  
ALI ST, 1991, ANN I H POINCARE-PHY, V55, P829
[3]  
Ali ST, 1998, J MATH PHYS, V39, P3954, DOI 10.1063/1.532478
[4]  
ALI ST, 1991, ANN I H POINCARE-PHY, V55, P857
[5]   COHERENT STATES AND THEIR GENERALIZATIONS - A MATHEMATICAL OVERVIEW [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP ;
MUELLER, UA .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (07) :1013-1104
[6]  
Ali ST., 2000, GRAD TEXT C
[7]   Wigner distribution function for finite systems [J].
Atakishiyev, NM ;
Chumakov, SM ;
Wolf, KB .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6247-6261
[8]  
BASTIAANS MJ, 1979, J OPT SOC AM, V69, P1710, DOI 10.1364/JOSA.69.001710
[9]   WIGNER DISTRIBUTION FUNCTION APPLIED TO OPTICAL SIGNALS AND SYSTEMS [J].
BASTIAANS, MJ .
OPTICS COMMUNICATIONS, 1978, 25 (01) :26-30
[10]   Microwave imaging of time-varying radar targets [J].
Bertrand, J ;
Bertrand, P .
INVERSE PROBLEMS, 1997, 13 (03) :621-645