Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling

被引:228
作者
Kobielak, Krzysztof [1 ]
Stokes, Nicole [1 ]
de la Cruz, June [1 ]
Polak, Lisa [1 ]
Fuchs, Elaine [1 ]
机构
[1] Rockefeller Univ, Dept Mammalian Cell Biol & Dev, Howard Hughes Med Inst, New York, NY 10021 USA
关键词
beta-catenin; BMPR1A; hair follicle; PTEN; tumorigenesis;
D O I
10.1073/pnas.0703004104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During the hair cycle, follicle stem cells (SCs) residing in a specialized niche called the "bulge" undergo bouts of quiescence and activation to cyclically regenerate new hairs. Developmental studies have long implicated the canonical bone morphogenetic protein (BMP) pathway in hair follicle (HF) determination and differentiation, but how BMP signaling functions in the hair follicle SC niche remains unknown. Here, we use loss and gain of function studies to manipulate BMP signaling in the SC niche. We show that when the Bmpr1a gene is conditionally ablated, otherwise quiescent SCs are activated to proliferate, causing an expansion of the niche and loss of slow-cycling cells. Surprisingly, follicle SCs are not lost, however, but rather, they generate long-lived, tumor-like branches that express Sox4, Lhx2, and Sonic Hedgehog but fail to terminally differentiate to make hair. A key component of BMPR1A-deficient SCs is their elevated levels of both Lef1 and ss-catenin, which form a bipartite transcription complex required for initiation of the hair cycle. Although ss-catenin can be stabilized by Writ signaling, we show that BMPR1A deficiency enhances ss-catenin stabilization in the niche through a pathway involving PTEN inhibition and PI3K/ AKT activation. Conversely, sustained BMP signaling in the SC niche blocks activation and promotes premature hair follicle differentiation. Together, these studies reveal the importance of balancing BMP signaling in the SC niche.
引用
收藏
页码:10063 / 10068
页数:6
相关论文
共 43 条
[1]   Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development [J].
Andl, T ;
Ahn, K ;
Kairo, A ;
Chu, EY ;
Wine-Lee, L ;
Reddy, ST ;
Croft, NJ ;
Cebra-Thomas, JA ;
Metzger, D ;
Chambon, P ;
Lyons, KM ;
Mishina, Y ;
Seykora, JT ;
Crenshaw, EB ;
Millar, SE .
DEVELOPMENT, 2004, 131 (10) :2257-2268
[2]   WNT signals are required for the initiation of hair follicle development [J].
Andl, T ;
Reddy, ST ;
Gaddapara, T ;
Millar, SE .
DEVELOPMENTAL CELL, 2002, 2 (05) :643-653
[3]   Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche [J].
Blanpain, C ;
Lowry, WE ;
Geoghegan, A ;
Polak, L ;
Fuchs, E .
CELL, 2004, 118 (05) :635-648
[4]   Noggin is a mesenchymally derived stimulator of hair-follicle induction [J].
Botchkarev, VA ;
Botchkareva, NV ;
Roth, W ;
Nakamura, M ;
Chen, LH ;
Herzog, W ;
Lindner, G ;
McMahon, JA ;
Peters, C ;
Lauster, R ;
McMahon, AP ;
Paus, R .
NATURE CELL BIOLOGY, 1999, 1 (03) :158-164
[5]   Long-term renewal of hair follicles from clonogenic multipotent stem cells [J].
Claudinot, S ;
Nicolas, M ;
Oshima, H ;
Rochat, A ;
Barrandon, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14677-14682
[6]   Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity [J].
Fang, Dexing ;
Hawke, David ;
Zheng, Yanhua ;
Xia, Yan ;
Meisenhelder, Jill ;
Nika, Heinz ;
Mills, Gordon B. ;
Kobayashi, Ryuji ;
Hunter, Tony ;
Lu, Zhimin .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (15) :11221-11229
[7]  
FUCHS E, 2007, NATURE, V446, P20
[8]   De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin [J].
Gat, U ;
DasGupta, R ;
Degenstein, L ;
Fuchs, E .
CELL, 1998, 95 (05) :605-614
[9]   BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling [J].
He, XC ;
Zhang, JW ;
Tong, WG ;
Tawfik, O ;
Ross, J ;
Scoville, DH ;
Tian, Q ;
Zeng, X ;
He, X ;
Wiedemann, LM ;
Mishina, Y ;
Li, LH .
NATURE GENETICS, 2004, 36 (10) :1117-1121
[10]   Unwinding a path to nuclear β-catenin [J].
He, Xi .
CELL, 2006, 127 (01) :40-42