Charge separation and (triplet) recombination in diketopyrrolopyrrole-fullerene triads

被引:51
作者
Karsten, Bram P. [1 ]
Bouwer, Ricardo K. M. [2 ,3 ,4 ,5 ]
Hummelen, Jan C. [2 ,3 ]
Williams, Rene M.
Janssen, Rene A. J. [1 ,4 ,5 ]
机构
[1] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[2] Univ Groningen, Stratingh Inst Chem, NL-9747 AG Groningen, Netherlands
[3] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[4] DPI, NL-5600 AX Eindhoven, Netherlands
[5] Univ Amsterdam, Vant Hoff Inst Mol Sci, Mol Photon Grp, NL-1018 WS Amsterdam, Netherlands
关键词
PHOTOINDUCED ELECTRON-TRANSFER; POLYMER SOLAR-CELLS; PHOTOPHYSICAL PROPERTIES; PORPHYRIN; STATE; ENERGY; C-60; OLIGOTHIOPHENE; EFFICIENCY; SOLVENTS;
D O I
10.1039/c0pp00098a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synthesis and photophysics of two diketopyrrolopyrrole-based small band gap oligomers, end-capped at both ends with C-60 are presented. Upon photoexcitation of the oligomer, ultrafast energy transfer to the fullerene occurs (similar to 0.5 ps), followed by an electron transfer reaction. Femtosecond transient absorption has been used to determine the rates for charge separation and recombination. Charge separation occurs in the Marcus normal region with a time constant of 18-47 ps and recombination occurs in the inverted regime, with a time constant of 37 ps to 1.5 ns. Both processes are faster in o-dichlorobenzene (ODCB) than in toluene. Analysis of the charge transfer rates by Marcus-Jortner theory leads to the view that the positive charge must be located on the thiophene/dithiophene unit closest to the fullerene. Approximately 14% of the charge transfer state was found to recombine into the low-lying triplet state of the oligomer for the smaller system in ODCB.
引用
收藏
页码:1055 / 1065
页数:11
相关论文
共 69 条
[11]   Photochemical and electrochemical properties of zinc Chlorin-C60 dyad as compared to corresponding free-base chlorin-C60, free-base Porphyrin-C60, and zinc porphyrin-C60 dyads [J].
Fukuzumi, S ;
Ohkubo, K ;
Imahori, H ;
Shao, JG ;
Ou, ZP ;
Zheng, G ;
Chen, YH ;
Pandey, RK ;
Fujitsuka, M ;
Ito, O ;
Kadish, KM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (43) :10676-10683
[12]   Fullerene for organic electronics [J].
Guldi, Dirk M. ;
Illescas, Beatriz M. ;
Ma Atienza, Carmen ;
Wielopolskia, Mateusz ;
Martin, Nazario .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (06) :1587-1597
[13]   Multifunctional molecular carbon materials - from fullerenes to carbon nanotubes [J].
Guldi, DM ;
Rahman, A ;
Sgobba, V ;
Ehli, C .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (05) :471-487
[14]   Excited-state properties of C60 fullerene derivatives [J].
Guldi, DM ;
Prato, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (10) :695-703
[15]   Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models [J].
Guldi, DM .
CHEMICAL SOCIETY REVIEWS, 2002, 31 (01) :22-36
[16]   Intramolecular electron transfer in fullerene/ferrocene based donor-bridge-acceptor dyads [J].
Guldi, DM ;
MAggini, M ;
Scorrano, G ;
Prato, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (05) :974-980
[17]   Photophysical properties of mono- and multiply-functionalized fullerene derivatives [J].
Guldi, DM ;
Asmus, KD .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (08) :1472-1481
[18]   Mimicking photosynthetic solar energy transduction [J].
Gust, D ;
Moore, TA ;
Moore, AL .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (01) :40-48
[19]   THE TRIPLET-STATE ENERGIES OF RUBRENE AND DIPHENYLISOBENZOFURAN [J].
HERKSTROETER, WG ;
MERKEL, PB .
JOURNAL OF PHOTOCHEMISTRY, 1981, 16 (04) :331-341
[20]   Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells [J].
Hou, Jianhui ;
Chen, Hsiang-Yu ;
Zhang, Shaoqing ;
Chen, Ruby I. ;
Yang, Yang ;
Wu, Yue ;
Li, Gang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (43) :15586-+