Comprehensive Analysis of HAMP Domains: Implications for Transmembrane Signal Transduction

被引:76
作者
Dunin-Horkawicz, Stanislaw [1 ]
Lupas, Andrei N. [1 ]
机构
[1] Max Planck Inst Dev Biol, Dept Prot Evolut, D-72076 Tubingen, Germany
关键词
two-component signal transduction; transmembrane signaling; protein evolution; classification; cluster analysis; MULTIPLE SEQUENCE ALIGNMENTS; ESCHERICHIA-COLI; STRUCTURE PREDICTION; HISTIDINE KINASE; LINKER REGION; RESPONSE REGULATORS; MUTATIONAL ANALYSIS; PROTEIN FAMILIES; SENSOR KINASES; CONSERVATION;
D O I
10.1016/j.jmb.2010.02.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homodimeric receptors with one or two transmembrane (TM) segments per monomer are universal to life and represent the largest and most diverse group of cellular TM receptors. They frequently share domain types across phyla and, in some cases, have been recombined experimentally into functional chimeras (e.g., the bacterial aspartate chemoreceptor with the human insulin receptor), suggesting that they have a common mechanism. The nature of this mechanism, however, is still being debated. We have proposed a new model for transduction mechanism by axial helix rotation, based on the structure of a widespread domain, HAMP, that frequently occurs in direct continuation of the last TM segment, primarily in histidine kinases and chemoreceptors. Here we show by statistical analysis that HAMP domain sequences have biophysical properties compatible with the two conformations proposed by the model. The analysis also identifies three networks of coevolving residues, which allow the mechanism to subdivide into individual steps. The most extended of these networks is specific for membrane-bound HAMP domains and most likely accepts the signal from the TM helices. In a classification based on sequence clustering, these HAMPs form a central supercluster, surrounded by smaller clusters of divergent HAMPs, which typically combine into arrays of up to 31 consecutive copies and accept conformational input from other HAMP domains. Unexpectedly, the classification shows a division between domains of histidine kinases and those of chemoreceptors; thus, except for a few versatile lineages, HAMP domains are largely specific for one particular output domain. Within proteins using a given output domain, HAMP domains also show extensive coevolution with histidine kinases, but not with chemoreceptors. We attribute the greater capability for recombination among chemoreceptors to their acquisition of a reversible modification system, which acts as a capacitor for the initially deleterious effects of combining domains optimized in different contexts. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1156 / 1174
页数:19
相关论文
共 51 条
[1]   Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors [J].
Alexander, Roger P. ;
Zhulin, Igor B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (08) :2885-2890
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases [J].
Appleman, JA ;
Chen, LL ;
Stewart, V .
JOURNAL OF BACTERIOLOGY, 2003, 185 (16) :4872-4882
[4]   Mutational analysis of a conserved signal-transducing element:: the HAMP linker of the Escherichia coli nitrate sensor NarX [J].
Appleman, JA ;
Stewart, V .
JOURNAL OF BACTERIOLOGY, 2003, 185 (01) :89-97
[5]   The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins [J].
Aravind, L ;
Ponting, CP .
FEMS MICROBIOLOGY LETTERS, 1999, 176 (01) :111-116
[6]   Correlations among amino acid sites in bHLH protein domains: An information theoretic analysis [J].
Atchley, WR ;
Wollenberg, KR ;
Fitch, WM ;
Terhalle, W ;
Dress, AW .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) :164-178
[7]   Automated server predictions in CASP7 [J].
Battey, James N. D. ;
Kopp, Jurgen ;
Bordoli, Lorenza ;
Read, Randy J. ;
Clarke, Neil D. ;
Schwede, Torsten .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 69 :68-82
[8]   TRANSMEMBRANE SIGNALING BY A HYBRID PROTEIN - COMMUNICATION FROM THE DOMAIN OF CHEMORECEPTOR TRG THAT RECOGNIZES SUGAR-BINDING PROTEINS TO THE KINASE/PHOSPHATASE DOMAIN OF OSMOSENSOR ENVZ [J].
BAUMGARTNER, JW ;
KIM, C ;
BRISSETTE, RE ;
INOUYE, M ;
PARK, C ;
HAZELBAUER, GL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (04) :1157-1163
[9]   Structure of CheA, a signal-transducing histidine kinase [J].
Bilwes, AM ;
Alex, LA ;
Crane, BR ;
Simon, MI .
CELL, 1999, 96 (01) :131-141
[10]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190